

LECTURE NOTES

ON

PYTHON PROGRAMMING

II B. Tech I semester (CY2105PC)

Prepared by

Mr. P Mabu Hussain
Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (CS)

NARASIMHA REDDY ENGINEERING COLLEGE
(Autonomous)

Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad

Accredited by NAAC with A Grade, Accredited by NBA

Course Name: PYTHON PROGRAMMING

Course Code: CY2105PC

COURSE OBJECTIVES

This course will enable students to

 Learn Syntax and Semantics and create Functions in Python.

 Handle Strings and Files in Python.

 Understand Lists, Dictionaries and Regular expressions in Python.

 Implement Object Oriented Programming concepts in Python.

 Build Web Services and introduction to Network and Database Programming in

Python.

COURSE OUTCOMES

The students should be able to

CO 1: Examine Python syntax and semantics and be fluent in the use of Python flow

control and functions.

CO 2: Demonstrate proficiency in handling Strings and File Systems.

CO 3: Create, run and manipulate Python Programs using core data structures like Lists,

Dictionaries and use Regular Expressions.

CO 4: Interpret the concepts of Object-Oriented Programming as used in Python.

CO 5: Implement exemplary applications related to Network Programming, Web Services

and Databases in Python.

PROGRAM OUTCOMES

PO 1 : Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO 2: Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO 3: Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified
needs with appropriate consideration for the public health and safety, and the
cultural, societal, and environmental considerations.

PO 4: Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to
complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

PO 10 : Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

PO 11 : Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own
work, as a member and leader in a team, to manage projects and in
multidisciplinary environments.

PO 12 : Life-long learning: Recognize the need for, and have the preparation and ability
to engage in independent and life-long learning in the broadest context of
technological change.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES:

CS751PC PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12

CO 1 √ √ √

CO 2 √ √ √

CO 3 √ √ √

CO 4 √ √ √

CO 5 √ √ √ √

UNIT - I

PYTHON PROGRAMMING

B. Tech II Year I Sem

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal

Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the

Standard Types, Unsupported Types.

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex

Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in

Attributes, Standard Files, Command-line Arguments, File System, File Execution,

Persistent Storage Modules, Related Modules.

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context

Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard

Exceptions, *Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?,

Exceptions and the sys Module, Related Modules.

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module

Attributes, Module Built-in Functions, Packages, Other Features of Modules

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python

Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and

the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - IV

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other

GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Wed Surfing with Python, Creating Simple Web

Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI

Application Advanced CGI, Web (HTTP) Servers

UNIT – V

Database Programming: Introduction, Python Database Application Programmer’s

Interface (DB-API), Object Relational Managers (ORMs), Related Modules

TEXT BOOK:

Core Python Programming, Wesley J. Chun, Second Edition, Pearson

INDEX

S.No Title Page No.

UNIT I -INTRODUCTION TO PYTHON

1.1 Python Basics 01

1.2 Python Objects 02

1.3 Standard Types 03

1.4 Other Built-in Types 03

1.5 Internal Types 05

1.6 Standard Type Operators 07

1.7 Standard Type Build-in Functions 11

1.8 Categorizing the Standard Types 17

1.9 Unsupported Types 18

1.10 Introduction to Numbers 19

1.11 Integers 20

1.12 Floating Point Real Numbers 21

1.13 Complex Numbers 21

1.14 Operators 22

1.15 Built-in Functions 24

1.16 Related Modules 24

1.17 Sequences Introduction 24

1.18 Strings 24

1.19 Lists and Tuples 26

1.20 Mapping and Set Types 29

UNITII –FILES & EXCEPTIONS IN PYTHON

2.1 Files - File Objects 36

2.2 File Built-in Function [open()] 36

2.3 File Built-in Methods 37

2.4 File Built-in Attributes 38

2.5 Standard Files 38

2.6 Command-line Arguments 39

2.7 File System 40

2.8 File Execution 40

2.9 Persistent Storage Modules 40

2.10 Related Modules 42

2.11 Exceptions - Exceptions in Python 42

2.12 Detecting and Handling Exceptions 43

2.13 Context Management 44

2.14 Exceptions as Strings 45

2.15 Raising Exceptions 46

2.16 Assertions 47

2.17 Standard Exceptions 48

2.18 Creating Exceptions 48

2.19 Why Exceptions (Now)? 48

2.20 Why Exceptions at All? 49

2.21 Exceptions and the sys Module 50

2.22 Related Modules 51

2.23 Modules - Modules and Files 51

2.24 Namespaces 53

2.25 Importing Modules & Attributes 54

2.26 Module Built-in Functions 55

2.27 Packages 56

2.28 Other Features of Modules 59

UNIT III – REGULAR EXPRESSIONS & MULTITHREAD PROGRAMMING

3.1 Regular Expressions- Introduction 63

3.2 Special Symbols and Characters 64

3.3 REs and Python 65

3.4 Multithreaded Programming - Introduction 65

3.5 Threads and Processes 67

3.6 Python, Threads, and the Global Interpreter Lock 67

3.7 Thread Module 68

3.8 Threading Module 70

3.9 Related Modules 71

UNIT IV –GUI & WEB PROGRAMMING

4.1 GUI Programming - Introduction 72

4.2 Tkinter and Python Programming 73

4.3 Brief Tour of other GUIs 75

4.4 Related Modules and other GUIs 77

4.5 Web Programming - Introduction 77

4.6 Web Surfing with Python: Creating Simple Web Clients 77

4.7 Advanced Web Clients 78

4.8 CGI: Helping Servers Process Client Data 79

4.9 Building CGI Application 80

4.10 Advanced CGI 81

4.11 Web (HTTP) Servers 83

UNIT V – DATABASE PROGRAMMING

5.1 Database Programming - Introduction 85

5.2 Python Database Application Programmer's Interface (DB-API) 86

5.3 Object-Relational Managers (ORMs) 87

5.4 Related Modules 88

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 1

Mr. P Mabu Hussain

Assistant Professor

UNIT I - INTRODUCTION TO PYTHON

1.1 Python Basics

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently whereas the

other languages use punctuations. It has fewer syntactical constructions than other languages.

1. Python is Interpreted − Python is processed at runtime by the interpreter. You do

not need to compile your program before executing it. This is similar to PERL and

PHP.

2. Python is Interactive − You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

3. Python is Object-Oriented − Python supports Object-Oriented style or technique of

programming that encapsulates code within objects.

4. Python is a Beginner's Language − Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from

simple text processing to WWW browsers to games.

History of Python:

Python was developed by Guido van Rossum in the late eighties and early nineties at

the National Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

SmallTalk, and Unix shell and other scripting languages.

 Python is copyrighted. Like Perl, Python source code is now available under the GNU

General Public License (GPL).

 Python is now maintained by a core development team at the institute, although Guido

van Rossum still holds a vital role in directing its progress.

 Python 1.0 was released in November 1994. In 2000, Python 2.0 was released. Python

2.7.11 is the latest edition of Python 2.

 Meanwhile, Python 3.0 was released in 2008. Python 3 is not backward compatible

with Python 2. The emphasis in Python 3 had been on the removal of duplicate

programming constructs and modules so that "There should be one -- and preferably

only one -- obvious way to do it." Python 3.5.1 is the latest version of Python 3.

Python Features:

1. Easy-to-learn − Python has few keywords, simple structure, and a clearly defined

syntax. This allows a student to pick up the language quickly.

2. Easy-to-read − Python code is more clearly defined and visible to the eyes.

3. Easy-to-maintain − Python's source code is fairly easy-to-maintain.

4. A broad standard library − Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

5. Interactive Mode − Python has support for an interactive mode which allows

interactive testing and debugging of snippets of code.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 2

Mr. P Mabu Hussain

Assistant Professor

6. Portable − Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

7. Extendable − You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more efficient.

8. Databases − Python provides interfaces to all major commercial databases.

9. GUI Programming − Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows MFC,

Macintosh, and the X Window system of Unix.

10. Scalable − Python provides a better structure and support for large programs than

shell scripting.

1.2 Python Objects

Python uses the object model abstraction for data storage. Any construct that contains

any type of value is an object. Although Python is classified as an "object-oriented

programming (OOP) language," OOP is not required to create perfectly working Python

applications. You can certainly write a useful Python script without the use of classes and

instances. However, Python's object syntax and architecture encourage or "provoke" this type

of behavior. Let us now take a closer look at what a Python object is.

All Python objects have the following three characteristics: an identity, a type, and a value.

IDENTITY--Unique identifier that differentiates an object from all others. Any object's

identifier can be obtained using the id() built-in function (BIF). This value is as close as you

will get to a "memory address" in Python (probably much to the relief of some of you). Even

better is that you rarely, if ever, access this value, much less care what it is at all.

TYPE--An object's type indicates what kind of values an object can hold, what operations

can be applied to such objects, and what behavioral rules these objects are subject to. You can

use the type() BIF to reveal the type of a Python object. Since types are also objects in Python

(did we mention that Python was object-oriented?), type() actually returns an object to you

rather than a simple literal.

VALUE--Data item that is represented by an object.

All three are assigned on object creation and are read-only with one exception, the

value. (For new-style types and classes, it may possible to change the type of an object, but

this is not recommended for the beginner.) If an object supports updates, its value can be

changed; otherwise, it is also read-only.

Whether an object's value can be changed is known as an object's mutability. These

characteristics exist as long as the object does and are reclaimed when an object is

deallocated.

Python supports a set of basic (built-in) data types, as well as some auxiliary types

that may come into play if your application requires them. Most applications generally use

the standard types and create and instantiate classes for all specialized data storage.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 3

Mr. P Mabu Hussain

Assistant Professor

Object Attributes

Certain Python objects have attributes, data values or executable code such as

methods, associated with them. Attributes are accessed in the dotted attribute notation, which

includes the name of the associated object, and were introduced in the Core Note in Section

The most familiar attributes are

functions and methods, but some Python types have data attributes associated with

them. Objects with data attributes include (but are not limited to): classes, class instances,

modules, complex numbers, and files.

1.3 Standard Types

 Numbers (separate subtypes; three are integer types)

o Integer

 Boolean

 Long integer

o Floating point real number

o Complex number

 String

 List

 Tuple

 Dictionary

We will also refer to standard types as "primitive data types" in this text because these

types represent the primitive data types that Python provides

1.4 Other Built-in Types

 Type

 Null object (None)

 File

 Set/Frozenset

 Function/Method

 Module

 Class

These are some of the other types you will interact with as you develop as a Python

programmer. We will also cover all of these in other chapters of this book with the exception

of the type and None types, which we will discuss here.

Type Objects and the “type” Type Object

It may seem unusual to regard types themselves as objects since we are attempting to

just describe all of Python's types to you in this chapter. However, if you keep in mind that an

object's set of inherent behaviors and must be defined somewhere, an object's type is a logical

place for this information. The amount of information necessary to describe a type cannot fit

into a single string; therefore types cannot simply be strings, nor should this information be

stored with the data, so we are back to types as objects.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 4

Mr. P Mabu Hussain

Assistant Professor

We will formally introduce the type() BIF below, but for now, we want to let you

know that you can find out the type of an object by calling type() with that object:

>>> type(42)

<type 'int'>

Let us look at this example more carefully. It does not look tricky by any means, but

examine the return value of the call. We get the seemingly innocent output of <type 'int'>, but

what you need to realize is that this is not just a simple string telling you that 42 is an integer.

What you see as <type 'int'> is actually a type object. It just so happens that the string

representation chosen by its implementors has a string inside it to let you know that it is an int

type object.

Now you may ask yourself, so then what is the type of any type object? Well, let us find out:

>>> type(type(42))

<type 'type'>

Yes, the type of all type objects is type. The type type object is also the mother of all

types and is the default metaclass for all standard Python classes. It is perfectly fine if you do

not understand this now. This will make sense as we learn more about classes and types.

With the unification of types and classes in Python 2.2, type objects are playing a

more significant role in both object-oriented programming as well as day-to-day object usage.

Classes are now types, and instances are now objects of their respective types.

“None”, Python's Null Object

Python has a special type known as the Null object or NoneType. It has only one

value, None. The type of None is NoneType. It does not have any operators or BIFs. If you

are familiar with C, the closest analogy to the None type is void, while the None value is

similar to the C value of NULL. (Other similar objects and values include Perl's undef and

Java's void type and null value.) None has no (useful) attributes and always evaluates to

having a Boolean False value.

Note: Boolean values

All standard type objects can be tested for truth value and compared to objects of the

same type. Objects have inherent TRue or False values. Objects take a False value when they

are empty, any numeric representation of zero, or the Null object None.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 5

Mr. P Mabu Hussain

Assistant Professor

The following are defined as having false values in Python:

 None

 False (Boolean)

 Any numeric zero:

 0 (integer)

 (float)

 0L (long integer)

 0.0+0.0j (complex)

 "" (empty string)

 [] (empty list)

 () (empty tuple)

 {} (empty dictionary)

Any value for an object other than those above is considered to have a true value, i.e.,

non-empty, non-zero, etc. User-created class instances have a false value when their nonzero

(nonzero ()) or length (len ()) special methods, if defined, return a zero value.

1.5 Internal Types

 Code

 Frame

 Traceback

 Slice

 Ellipsis

 Xrange

The general application programmer would typically not interact with these objects

directly, but we include them here for completeness. Please refer to the source code or Python

internal and online documentation for more information.

In case you were wondering about exceptions, they are now implemented as classes. In

older versions of Python, exceptions were implemented as strings.

Code Objects

Code objects are executable pieces of Python source that are byte-compiled, usually

as return values from calling the compile() BIF. Such objects are appropriate for execution by

either exec or by the eval () BIF. All this will be discussed in greater detail in Chapter 14.

Code objects themselves do not contain any information regarding their execution

environment, but they are at the heart of every user-defined function, all of which do contain

some execution context. (The actual byte-compiled code as a code object is one attribute

belonging to a function.) Along with the code object, a function's attributes also consist of the

administrative support that a function requires, including its name, documentation string,

default arguments, and global namespace.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 6

Mr. P Mabu Hussain

Assistant Professor

Frame Objects

These are objects representing execution stack frames in Python. Frame objects

contain all the information the Python interpreter needs to know during a runtime execution

environment. Some of its attributes include a link to the previous stack frame, the code object

(see above) that is being executed, dictionaries for the local and global namespaces, and the

current instruction. Each function call results in a new frame object, and for each frame

object, a C stack frame is created as well. One place where you can access a frame object is

in a traceback object.

Traceback Objects

When you make an error in Python, an exception is raised. If exceptions are not

caught or "handled," the interpreter exits with some diagnostic information similar to the

output shown below:

Traceback (innermost last):

File "<stdin>", line N?, in ???

ErrorName: error reason

The traceback object is just a data item that holds the stack trace information for an

exception and is created when an exception occurs. If a handler is provided for an exception,

this handler is given access to the traceback object.

Slice Objects

Slice objects are created using the Python extended slice syntax. This extended syntax

allows for different types of indexing. These various types of indexing include stride

indexing, multi-dimensional indexing, and indexing using the Ellipsis type. The syntax for

multi-dimensional indexing is sequence [start1 : end1, start2 : end2], or using the ellipsis,

sequence [..., start1 : end1]. Slice objects can also be generated by the slice() BIF.

Stride indexing for sequence types allows for a third slice element that allows for

"step"-like access with a syntax of sequence[starting_index : ending_index : stride].

Support for the stride element of the extended slice syntax have been in Python for a

long time, but until 2.3 was only available via the C API or Jython (and previously JPython).

Here is an example of stride indexing:

>>> foostr = 'abcde'

>>> foostr[::-1] 'edcba'

>>> foostr[::-2] 'eca'

>>> foolist = [123, 'xba', 342.23, 'abc']

>>> foolist[::-1]

['abc', 342.23, 'xba', 123]

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 7

Mr. P Mabu Hussain

Assistant Professor

Ellipsis Objects

Ellipsis objects are used in extended slice notations as demonstrated above. These

objects are used to represent the actual ellipses in the slice syntax (...). Like the Null object

None, ellipsis objects also have a single name, Ellipsis, and have a Boolean TRue value at all

times.

XRange Objects

XRange objects are created by the BIF xrange(), a sibling of the range() BIF, and used

when memory is limited and when range() generates an unusually large data set.

For an interesting side adventure into Python types, we invite the reader to take a look

at the typesmodule in the standard Python library.

1.6 Standard Type Operators

Object Value Comparison

Comparison operators are used to determine equality of two data values between

members of the same type. These comparison operators are supported for all built-in types.

Comparisons yield Boolean TRue or False values, based on the validity of the comparison

expression. (If you are using Python prior to 2.3 when the Boolean type was introduced, you

will see integer values 1 for TRue and 0 for False.)

Standard Type Value Comparison Operators

Operator Function

expr1 < expr2 expr1 is less than expr2

expr1 > expr2 expr1 is greater than expr2

expr1 <= expr2 expr1 is less than or equal to expr2

expr1 >= expr2 expr1 is greater than or equal to expr2

expr1 == expr2 expr1 is equal to expr2

expr1 != expr2 expr1 is not equal to expr2 (C-style)

expr1 <> expr2 expr1 is not equal to expr2 (ABC/Pascal-style)[a]

This "not equal" sign will be phased out in future version of Python. Use != instead.

Note that comparisons performed are those that are appropriate for each data type. In

other words, numeric types will be compared according to numeric value in sign and

magnitude, strings will compare lexicographically, etc.

>>> 2 == 2

True

>>> 2.46 <= 8.33

True

>>> 5+4j >= 2-3j

True

>>> 'abc' == 'xyz' False

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 8

Mr. P Mabu Hussain

Assistant Professor

>>> 'abc' > 'xyz' False

>>> 'abc' < 'xyz' True

>>> [3, 'abc'] == ['abc', 3]

False

>>> [3, 'abc'] == [3, 'abc']

True

Also, unlike many other languages, multiple comparisons can be made on the same line,

evaluated in left-to-right order:

>>> 3 < 4 < 7 # same as (3 < 4) and (4 < 7) True

>>> 4 > 3 == 3 # same as (4 > 3) and (3 == 3) True

>>> 4 < 3 < 5 != 2 < 7

False

We would like to note here that comparisons are strictly between object values,

meaning that the comparisons are between the data values and not the actual data objects

themselves. For the latter, we will defer to the object identity comparison operators described

next.

Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly

comparing objects themselves. Objects can be assigned to other variables (by reference).

Because each variable points to the same (shared) data object, any change effected through

one variable will change the object and hence be reflected through all references to the same

object.

In order to understand this, you will have to think of variables as linking to objects

now and be less concerned with the values themselves. Let us take a look at three examples.

Example 1: foo1 and foo2 reference the same object

foo1 = foo2 = 4.3

When you look at this statement from the value point of view, it appears that you are

performing a multiple assignment and assigning the numeric value of 4.3 to both the foo1 and

foo2 variables. This is true to a certain degree, but upon lifting the covers, you will find that a

numeric object with the contents or value of 4.3 has been created. Then that object's reference

is assigned to both foo1 and foo2, resulting in both foo1 and foo2 aliased to the same object.

Figure 4-1 shows an object with two references.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 9

Mr. P Mabu Hussain

Assistant Professor

Figure 1.1 : foo1 and foo2 reference the same object

Example 2: foo1 and foo2 reference the same object

foo1 = 4.3 foo2 = foo1

This example is very much like the first: A numeric object with value 4.3 is created,

then assigned to one variable. When foo2 = foo1 occurs, foo2 is directed to the same object

as foo1 since Python deals with objects by passing references. foo2 then becomes a new and

additional reference for the original value. So both foo1 and foo2 now point to the same

object. The same figure above applies here as well.

Example 3: foo1 and foo2 reference different objects

foo1 = 4.3

foo2 = 1.3 + 3.0

This example is different. First, a numeric object is created, then assigned to foo1.

Then a second numeric object is created, and this time assigned to foo2. Although both

objects are storing the exact same value, there are indeed two distinct objects in the system,

with foo1 pointing to the first, and foo2 being a reference to the second. Figure 4-2 shows we

now have two distinct objects even though both objects have the same value.

Figure 1.2: foo1 and foo2 reference different objects

Why did we choose to use boxes in our diagrams? Well, a good way to visualize this

concept is to imagine a box (with contents inside) as an object. When a variable is assigned

an object, that creates a "label" to stick on the box, indicating a reference has been made.

Each time a new reference to the same object is made, another sticker is put on the box.

When references are abandoned, then a label is removed. A box can be "recycled" only when

all the labels have been peeled off the box. How does the system keep track of how many

labels are on a box?

Each object has associated with it a counter that tracks the total number of references that

exist to that object.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 10

Mr. P Mabu Hussain

Assistant Professor

This number simply indicates how many variables are "pointing to" any particular object

Performing a check such as a is b is an equivalent expression to id(a) == id(b).

The object identity comparison operators all share the same precedence level and are

presented in Table

Standard Type Object Identity Comparison Operators

Operator Function

obj1 is obj2 obj1 is the same object as obj2

obj1 is not obj2 obj1 is not the same object as obj2

In the example below, we create a variable, and then another that points to the same object.

>>> a = [5, 'hat', -9.3]

>>> b = a

>>> a is b True

>>> a is not b False

>>>

>>> b = 2.5e-5

>>> b 2.5e-005

>>> a

[5, 'hat', -9.3]

>>> a is b False

>>> a is not b True

Both the is and not identifiers are Python keywords.

Note: Interning

In the above examples with the foo1 and foo2 objects, you will notice that we use

floating point values rather than integers. The reason for this is although integers and strings

are immutable objects, Python sometimes caches them to be more efficient. This would have

caused the examples to appear that Python is not creating a new object when it should have.

For example:

>>> a = 1

>>> id(a) 8402824

>>> b = 1

>>> id(b) 8402824

>>>

>>> c = 1.0

>>> id(c) 8651220

>>> d = 1.0

>>> id(d) 8651204

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 11

Mr. P Mabu Hussain

Assistant Professor

In the above example, a and b reference the same integer object, but c and d do not

reference the same float object. If we were purists, we would want a and b to work just like c

and d because we really did ask to create a new integer object rather than an alias, as in b = a.

Python caches or interns only simple integers that it believes will be used frequently

in any Python application. At the time of this writing, Python interns integers in the range(-1,

100) but this is subject to change, so do not code your application to expect this.

In Python 2.3, the decision was made to no longer intern strings that do not have at

least one reference outside of the "interned strings table." This means that without that

reference, interned strings are nolonger immortal and subject to garbage collection like

everything else.

A BIF introduced in 1.5 to request interning of strings, intern(), has now been deprecated as a

result.

Boolean

Expressions may be linked together or negated using the Boolean logical operators

and, or, and not, all of which are Python keywords. These Boolean operations are in highest-

to-lowest order of precedence in Table 4.3. The not operator has the highest precedence and

is immediately one level below all the comparison operators. The and and or operators

follow, respectively.

Standard Type Boolean Operators

Operator Function

not expr Logical NOT of expr (negation)

expr1 and expr2 Logical AND of expr1 and expr2 (conjunction)

expr1 orexpr2 Logical OR of expr1 and expr2 (disjunction)

>>> x, y = 3.1415926536, -1024

>>> x < 5.0

True

>>> not (x < 5.0) False

>>> (x < 5.0) or (y > 2.718281828)

True

>>> (x < 5.0) and (y > 2.718281828)

False

>>> not (x is y) True

Earlier, we introduced the notion that Python supports multiple comparisons within

one expression. These expressions have an implicit and operator joining them together.

>>> 3 < 4 < 7 # same as "(3 < 4) and (4 < 7)" True.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 12

Mr. P Mabu Hussain

Assistant Professor

1.7 Standard Type Build-in Functions

Along with generic operators, which we have just seen, Python also provides some

BIFs that can be applied to all the basic object types: cmp(),repr(),str(),type(), and the single

reverse or back quotes (``) operator, which is functionally equivalent to repr().

Standard Type Built-in Functions

Function Operation

cmp(obj1, obj2) Compares obj1 and obj2, returns integer i where:

i < 0 if obj1 < obj2

i > 0 if obj1 > obj2

i == 0 if obj1 == obj2

repr(obj) or `obj` Returns evaluatable string representation of obj

str(obj) Returns printable string representation of obj

type(obj) Determines type of obj and return type object

type()

We now formally introduce type(). In Python versions earlier than 2.2, type() is a BIF.

Since that release, it has become a "factory function." We will discuss these later on in this

chapter, but for now, you may continue to think of type() as a BIF. The syntax for type() is:

type(object):type() takes an object and returns its type. The return value is a type object.

>>> type(4) # int type

<type 'int'>

>>>

>>> type('Hello World!') # string type

<type 'string'>

>>>

>>> type(type(4)) # type type

<type 'type'>

In the examples above, we take an integer and a string and obtain their types using the

type() BIF; in order to also verify that types themselves are types, we call type() on the output

of a type() call.

Note the interesting output from the type() function. It does not look like a typical

Python data type, i. e., a number or string, but is something enclosed by greater-than and less-

than signs. This syntax is generally a clue that what you are looking at is an object. Objects

may implement a printable string representation; however, this is not always the case. In

these scenarios where there is no easy way to "display" an object, Python "pretty-prints" a

string representation of the object. The format is usually of the form:

<object_something_or_another>. Any object displayed in this manner generally gives the

object type, an object ID or location, or other pertinent information.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 13

Mr. P Mabu Hussain

Assistant Professor

cmp():

The cmp() BIF CoMPares two objects, say, obj1 and obj2, and returns a negative number

(integer) if obj1 is less than obj2, a positive number if obj1 is greater than obj2, and zero if

obj1 is equal to obj2. Notice the similarity in return values as C's strcmp(). The comparison

used is the one that applies for that type of object, whether it be a standard type or a user-

created class; if the latter, cmp() will call the class's special cmp () method. Here are

some samples of using the cmp() BIF with numbers and strings.

>>> a, b = -4, 12

>>> cmp(a,b)

-1

>>> cmp(b,a) 1

>>> b = -4

>>> cmp(a,b) 0

>>>

>>> a, b = 'abc', 'xyz'

>>> cmp(a,b)

-23

>>> cmp(b,a) 23

>>> b = 'abc'

>>> cmp(a,b) 0

We will look at using cmp() with other objects later.

str() and repr() (and `` Operator)

The str() STRing and repr() REPResentation BIFs or the single back or reverse quote

operator (``) come in very handy if the need arises to either re-create an object through

evaluation or obtain a human-readable view of the contents of objects, data values, object

types, etc. To use these operations, a Python object is provided as an argument and some type

of string representation of that object is returned. In the examples that follow, we take some

random Python types and convert them to their string representations.

>>> str(4.53-2j) '(4.53-2j)'

>>> str(1) '1'

>>> str(2e10) '20000000000.0'

>>> str([0, 5, 9, 9])

'[0, 5, 9, 9]'

>>> repr([0, 5, 9, 9])

'[0, 5, 9, 9]'

>>> `[0, 5, 9, 9]`

'[0, 5, 9, 9]'

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 14

Mr. P Mabu Hussain

Assistant Professor

Although all three are similar in nature and functionality, only repr() and `` do exactly

the same thing, and using them will deliver the "official" string representation of an object

that can be evaluated as a valid Python expression (using the eval() BIF). In contrast, str() has

the job of delivering a "printable" string representation of an object, which may not

necessarily be acceptable by eval(), but will look nice in a print statement. There is a caveat

that while most return values from repr() can be evaluated, not all can:

>>> eval(`type(type))`)

File "<stdin>", line 1 eval(`type(type))`)

SyntaxError: invalid syntax

The executive summary is that repr() is Python-friendly while str() produces human-

friendly output. However, with that said, because both types of string representations

coincide so often, on many occasions all three return the exact same string.

Note: Why have both repr() and ``?

Occasionally in Python, you will find both an operator and a function that do exactly

the same thing. One reason why both an operator and a function exist is that there are times

where a function may be more useful than the operator, for example, when you are passing

around executable objects like functions and where different functions may be called

depending on the data item. Another example is the double-star (**) and pow() BIF, which

performs "x to the y power" exponentiation for x ** y or pow(x,y).

type() and isinstance()

Python does not support method or function overloading, so you are responsible for

any "introspection" of the objects that your functions are called with.

What's in a name? Quite a lot, if it is the name of a type. It is often advantageous

and/or necessary to base pending computation on the type of object that is received.

Fortunately, Python provides a BIF just for that very purpose. type() returns the type for any

Python object, not just the standard types. Usingthe interactive interpreter, let us take a look

at some examples of what type() returns when we give it various objects.

>>> type('')

<type 'str'>

>>>

>>> s = 'xyz'

>>> type(s)

<type 'str'>

>>>

>>> type(100)

<type 'int'>

>>> type(0+0j)

<type 'complex'>

>>> type(0L)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 15

Mr. P Mabu Hussain

Assistant Professor

<type 'long'>

>>> type(0.0)

<type 'float'>

>>>

>>> type([])

<type 'list'>

>>> type(())

<type 'tuple'>

>>> type({})

<type 'dict'>

>>> type(type)

<type 'type'>

>>>

>>> class Foo: pass # new-style class

...

>>> foo = Foo()

>>> class Bar(object): pass # new-style class

...

>>> bar = Bar()

>>>

>>> type(Foo)

<type 'classobj'>

>>> type(foo)

<type 'instance'>

>>> type(Bar)

<type 'type'>

>>> type(bar)

<class ' main .Bar'>

Types and classes were unified in Python 2.2. You will see output different from that above if

you are using a version of Python older than 2.2:

>>> type('')

<type 'string'>

>>> type(0L)

<type 'long int'>

>>> type({})

<type 'dictionary'>

>>> type(type)

<type 'builtin_function_or_method'>

>>> type(Foo)# assumes Foo created as in above

<type 'class'>

>>> type(foo) # assumes foo instantiated also

<type 'instance'>

In addition to type(), there is another useful BIF called isinstance().

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 16

Mr. P Mabu Hussain

Assistant Professor

Example

We present a script in Example that shows how we can use isinstance() and type() in a

runtime environment. We follow with a discussion of the use of type() and how we migrated

to using isinstance () instead for the bulk of the work in this example.

Example:Checking the Type (typechk.py)

The function displayNumType() takes a numeric argument and uses the type() built-in

to indicate its type (or "not a number," if that is the case).

1 #!/usr/bin/env python 2

3 def displayNumType(num):

4 print num, 'is',

5 if isinstance(num, (int, long, float, complex)):

6 print 'a number of type:', type(num). name

7 else:

8 print 'not a number at all!!' 9

10 displayNumType(-69)

11 displayNumType(9999999999999999999999L)

12 displayNumType(98.6)

13 displayNumType(-5.2+1.9j)

14 displayNumType('xxx')

Running typechk.py, we get the following output:

-69 is a number of type: int

9999999999999999999999 is a number of type: long

98.6 is a number of type: float

(-5.2+1.9j) is a number of type: complex

xxx is not a number at all!!

Reducing Number of Function Calls

If we take a closer look at our code, we see a pair of calls to type(). As you know, we pay a

small price each time a function is called, so if we can reduce that number, it will help with

performance.

An alternative to comparing an object's type with a known object's type (as we did

above and in the example below) is to utilize the types module, which we briefly mentioned

earlier in the chapter. If we do that, then we can use the type object there without having to

"calculate it." We can then change our code to only having one call to the type() function:

>>> import types

>>> if type(num) == types.IntType.

Object Value Comparison versus Object Identity Comparison

We discussed object value comparison versus object identity comparison earlier in

this chapter, and if you realize one key fact, then it will become clear that our code is still not

optimal in terms of performance. During runtime, there is always only one type object that

represents an integer. In other words, type(0), type(42), type(-100) are always the same

object: <type 'int'> (and this is also the same object as types.IntType).

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 17

Mr. P Mabu Hussain

Assistant Professor

If they are always the same object, then why do we have to compare their values since

we already know they will be the same? We are "wasting time" extracting the values of both

objects and comparing them if they are the same object, and it would be more optimal to just

compare the objects themselves. Thus we have a migration of the code above to the

following:

if type(num) is types.IntType... # or type(0)

Does that make sense? Object value comparison via the equal sign requires a

comparison of their values, but we can bypass this check if the objects themselves are the

same. If the objects are different,then we do not even need to check because that means the

original variable must be of a different type (since there is only one object of each type). One

call like this may not make a difference, but if there are many similar lines of code

throughout your application, then it starts to add up.

Reduce the Number of Lookups

This is a minor improvement to the previous example and really only makes a

difference if your application performs makes many type comparisons like our example. To

actually get the integer type object, the interpreter has to look up the types name first, and

then within that module's dictionary, find IntType. By using from-import, you can take away

one lookup:

from types import IntType

if type(num) is IntType ...

Convenience and Style

The unification of types and classes in 2.2 has resulted in the expected rise in the use

of the isinstance () BIF. We formally introduce isinstance() in Chapter 13 (Object-Oriented

Programming), but we will give you a quick preview now.

This Boolean function takes an object and one or more type objects and returns true if

the object in question is an instance of one of the type objects. Since types and classes are

now the same, int is now a type (object) and a class. We can use isinstance() with the built-in

types to make our if statement more convenient and readable:

if isinstance(num, int)...

Using isinstance() along with type objects is now also the accepted style of usage when

introspecting objects' types, which is how we finally arrive at our updated typechk.py

application above. We also get the added bonus of isinstance() accepting a tuple of type

objects to check against our object with instead of having an if-elif-else if we were to use

only type().

1.8 Categorizing the Standard Types

Since Python 2.2 with the unification of types and classes, all of the built-in types are

now classes, and with that, all of the "conversion" built-in functions like int(), type(), list(),

etc., are now factory functions.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 18

Mr. P Mabu Hussain

Assistant Professor

This means that although they look and act somewhat like functions, they are actually class

names, and when you call one, you are actually instantiating an instance of that type, like a

factory producing a good.

The following familiar factory functions were formerly built-in functions:

 int(), long(), float(), complex()

 str(), unicode(), basestring()

 list(), tuple()

 type()

Other types that did not have factory functions now do. In addition, factory functions

have been added for completely new types that support the new-style classes.

The following is a list of both types of factory functions:

 dict()

 bool()

 set(), frozenset()

 object()

 classmethod()

 staticmethod()

 super()

 property()

 file()

1.9 Unsupported Types

Before we explore each standard type, we conclude this chapter by giving a list of

types that are not supported by Python.

char or byte

Python does not have a char or byte type to hold either single character or 8-bit

integers. Use strings of length one for characters and integers for 8-bit numbers.

pointer

Since Python manages memory for you, there is no need to access pointer addresses.

The closest to an address that you can get in Python is by looking at an object's identity using

the id() BIF. Since you have no control over this value, it's a moot point. However, under

Python's covers, everything is a pointer.

int versus short versus long

Python's plain integers are the universal "standard" integer type, obviating the need for three

different integer types, e.g., C's int, short, and long. For the record, Python's integers are

implemented as C longs. Also, since there is a close relationship between Python's int and

long types, users have even fewer things to worry about. You only need to use a single type,

the Python integer. Even when the size of an integer is exceed, for example, multiplying two

very large numbers, Python automatically gives you a long back instead of overflowing with

an error.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 19

Mr. P Mabu Hussain

Assistant Professor

float versus double:

C has both a single precision float type and double-precision double type. Python's

float type is actually a C double. Python does not support a single-precision floating point

type because its benefits are outweighed by the overhead required to support two types of

floating point types. For those wanting more accuracy and willing to give up a wider range of

numbers, Python has a decimal floating point number too, but you have to import the decimal

module to use the Decimal type. Floats are always estimations. Decimals are exact and

arbitrary precision. Decimals make sense concerning things like money where the values are

exact. Floats make sense for things that are estimates anyway, such as weights, lengths, and

other measurements.

1.10 Introduction to Numbers

Numbers provide literal or scalar storage and direct access. A number is also an

immutable type, meaning that changing or updating its value results in a newly allocated

object. This activity is, of course, transparent to both the programmer and the user, so it

should not change the way the application is developed.

Python has several numeric types: "plain" integers, long integers, Boolean, double-

precision floating point real numbers, decimal floating point numbers, and complex numbers.

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assigning a value to a variable:

anInt = 1

aLong = -9999999999999999L

aFloat = 3.1415926535897932384626433832795

aComplex = 1.23+4.56J

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another number.

The new value can be related to its previous value or to a completely different number

altogether. We put quotes around update because you are not really changing the value of the

original variable. Because numbers are immutable, you are just making a new number and

reassigning the reference. Do not be fooled by what you were taught about how variables

contain values that allow you to update them. Python's object model is more specific than

that.

When we learned programming, we were taught that variables act like boxes that hold

values. In Python, variables act like pointers that point to boxes. For immutable types, you do

not change the contents of the box, you just point your pointer at a new box. Every time you

assign another number to a variable, you are creating a new object and assigning it. (This is

true for all immutable types, not just numbers.)

anInt += 1

aFloat = 2.718281828

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 20

Mr. P Mabu Hussain

Assistant Professor

How to Remove Numbers

Under normal circumstances, you do not really "remove" a number; you just stop

using it! If you really want to delete a reference to a number object, just use the del statement

(introduced in Section 3.5.6). You can no longer use the variable name, once removed, unless

you assign it to a new object; otherwise, you will cause a NameError exception to occur.

del anInt

del aLong, aFloat, aComplex

Okay, now that you have a good idea of how to create and update numbers, let us take

a look at Python's four numeric types.

1.11 Integers

Python has several types of integers. There is the Boolean type with two possible

values. There are the regular or plain integers: generic vanilla integers recognized on most

systems today. Python also has a long integer size; however, these far exceed the size

provided by C longs . We will take a look at these types of integers, followed by a description

of operators and built-in functions applicable only to Python integer types.

Boolean

The Boolean type was introduced in Python 2.3. Objects of this type have two

possible values, BooleanTRue and False. We will explore Boolean objects toward the end of

this chapter in Section 5.7.1.

Standard (Regular or Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit)

running Python will provide a range of -231 to 231-1, that is -2, 147,483,648 to

2,147,483,647. If Python is compiled on a 64-bit system with a 64-bit compiler, then the

integers for that system will be 64-bit. Here are some examples of Python integers:

0101 84 -237 0x80 017 -680 -0X92

Python integers are implemented as (signed) longs in C. Integers are normally

represented in base 10 decimal format, but they can also be specified in base 8 or base 16

representation. Octal values have a "0" prefix, and hexadecimal values have either "0x" or

"0X" prefixes.

Long Integers

The first thing we need to say about Python long integers (or longs for short) is not to

get them confused with longs in C or other compiled languagesthese values are typically

restricted to 32- or 64- bit sizes.

whereas Python longs are limited only by the amount of (virtual) memory in your machine.

In other words, they can be very L-O-N-G longs.

Longs are a superset of integers and are useful when your application requires

integers that exceed the range of plain integers, meaning less than -231 or greater than 231-1.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 21

Mr. P Mabu Hussain

Assistant Professor

Use of longs is denoted by the letter "L", uppercase (L) or lowercase (l), appended to

the integer's numeric value. Values can be expressed in decimal, octal, or hexadecimal. The

following are examples of longs:

16384L -0x4E8L 017L-2147483648l 052144364L

299792458l 0xDECADEDEADBEEFBADFEEDDEAL -5432101234L

Core Style: Use uppercase "L" with long integers

Although Python supports a case-insensitive "L" to denote longs, we recommend that

you use only the uppercase "L" to avoid confusion with the number one (1). Python will

display only longs with a capital "L ." As integers and longs are slowly being unified, you

will only see the "L" with evaluatable string representations (repr()) of longs.

Printable string representations (str()) will not have the "L ."

>>> aLong = 999999999l

>>> aLong 999999999L

>>> print aLong 999999999

1.12 Floating Point Real Numbers

Floats in Python are implemented as C doubles, double precision floating point real

numbers, values that can be represented in straightforward decimal or scientific notations.

These 8-byte (64-bit) values conform to the IEEE 754 definition (52M/11E/1S) where 52 bits

are allocated to the mantissa, 11 bits to the exponent (this gives you about ± 10308.25 in

range), and the final bit to the sign. That all sounds fine and dandy; however, the actual

degree of precision you will receive (along with the range and overflow handling) depends

completely on the architecture of the machine as well as the implementation of the compiler

that built your Python interpreter.

Floating point values are denoted by a decimal point (.) in the appropriate place and

an optional "e" suffix representing scientific notation. We can use either lowercase (e) or

uppercase (E). Positive (+) or negative (-) signs between the "e" and the exponent indicate

the sign of the exponent. Absence of such a sign indicates a positive exponent. Here are some

floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0

4.3e25 9.384e-23 -2.172818 float(12) 1.000000001

3.1416 4.2E-10 -90. 6.022e23 -1.609E-19

1.13 Complex Numbers

A long time ago, mathematicians were absorbed by the following equation: x2 = -1

The reason for this is that any real number (positive or negative) multiplied by itself results in

a positive number. How can you multiply any number with itself to get a negative number?

No such real number exists. So in the eighteenth century, mathematicians invented something

called an imaginary number i (or) j, depending on what math book you are reading) such that:

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 22

Mr. P Mabu Hussain

Assistant Professor

Basically a new branch of mathematics was created around this special number (or

concept), and now imaginary numbers are used in numerical and mathematical applications.

Combining a real number with an imaginary number forms a single entity known as a

complex number. A complex number is any ordered pair of floating point real numbers (x, y)

denoted by x + yj where x is the real part and y is the imaginary part of a complex number.

It turns out that complex numbers are used a lot in everyday math, engineering,

electronics, etc. Because it became clear that many researchers were reinventing this wheel

quite often, complex numbers became a real Python data type long ago in version 1.4.

Here are some facts about Python's support of complex numbers:

 Imaginary numbers by themselves are not supported in Python (they are paired with a

real part of 0.0 to make a complex number)

 Complex numbers are made up of real and imaginary parts

 Syntax for a complex number: real+imagj

 Both real and imaginary components are floating point values

 Imaginary part is suffixed with letter "J" lowercase (j) or uppercase (J)

The following are examples of complex numbers:

64.375+1j 4.23-8.5j 0.23-8.55j 1.23e-045+6.7e+089j

6.23+1.5j -1.23-875J 0+1j 9.80665-8.31441J -.0224+0j

1.14 Operators

Numeric types support a wide variety of operators, ranging from the standard type of

operators to operators created specifically for numbers, and even some that apply to integer

types only.

Mixed-Mode Operations

It may be hard to remember, but when you added a pair of numbers in the past, what

was important was that you got your numbers correct. Addition using the plus (+) sign was

always the same. In programming languages, this may not be as straightforward because

there are different types of numbers.

When you add a pair of integers, the + represents integer addition, and when you add

a pair of floating point numbers, the + represents double-precision floating point addition,

and so on. Our little description extends even to non-numeric types in Python. For example,

the + operator for strings represents concatenation, not addition, but it uses the same operator!

The point is that for each data type that supports the + operator, there are different pieces of

functionality to "make it all work," embodying the concept of overloading.

Now, we cannot add a number and a string, but Python does support mixed mode

operations strictly between numeric types. When adding an integer and a float, a choice has

to be made as to whether integer or floating point addition is used. There is no hybrid

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 23

Mr. P Mabu Hussain

Assistant Professor

operation. Python solves this problem using something called numeric coercion. This is the

process whereby one of the operands is converted to the same type as the other before the

operation. Python performs this coercion by following some basic rules.

To begin with, if both numbers are the same type, no conversion is necessary. When

both types are different, a search takes place to see whether one number can be converted to

the other's type. If so, the operation occurs and both numbers are returned, one having been

converted. There are rules that must be followed since certain conversions are impossible,

such as turning a float into an integer, or converting a complex number to any non-complex

number type.

Coercions that are possible, however, include turning an integer into a float (just add

".0") or converting any non-complex type to a complex number (just add a zero imaginary

component, e.g., "0j"). The rules of coercion follow from these two examples: integers move

toward float, and all move toward complex. The Python Language Reference Guide describes

the coerce() operation in the following manner.

 If either argument is a complex number, the other is converted to complex;

 Otherwise, if either argument is a floating point number, the other is converted to

floating point;

 Otherwise, if either argument is a long, the other is converted to long;

 Otherwise, both must be plain integers and no conversion is necessary (in the

upcoming diagram, this describes the rightmost arrow).

Figure 1.3 : Numeric Coercion

Automatic numeric coercion makes life easier for the programmer because he or she

does not have to worry about adding coercion code to his or her application. If explicit

coercion is desired, Python does provide the coerce() built-in.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 24

Mr. P Mabu Hussain

Assistant Professor

The following is an example showing you Python's automatic coercion. In order to

add the numbers (one integer, one float), both need to be converted to the same type. Since

float is the superset, the integer is coerced to a float before the operation happens, leaving the

result as a float:

>>> 1 + 4.5

5.5

 Standard Type Operators

 Numeric Type (Arithmetic) Operators

 Bit Operators (Integer-Only)

1.15 Built-in Functions

Built-in and Factory Functions are

 Standard Type Functions

 Numeric Type Functions

 Integer-Only Functions

1.16 Related Modules

There are a number of modules in the Python standard library that add on to the

functionality of the operators and built-in functions for numeric types.

1.17 Sequences Introduction

Sequence types all share the same access model: ordered set with sequentially indexed

offsets to get to each element. Multiple elements may be selected by using the slice

operators, which we will explore in this chapter. The numbering scheme used starts from

zero (0) and ends with one less than the length of the sequence the reason for this is

because we began at 0. Fig illustrates how sequence items are stored.

1.18 Strings

Fig 1.4: sequence representation

Strings are among the most popular types in Python. We can create them simply by

enclosing characters in quotes. Python treats single quotes the same as double quotes. This

contrasts with most other shell-type scripting languages, which use single quotes for literal

strings and double quotes to allow escaping of characters. Python uses the "raw string"

operator to create literal quotes, so no differentiation is necessary. Other languages such as C

use single quotes for characters and double quotes for strings.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 25

Mr. P Mabu Hussain

Assistant Professor

Python does not have a character type; this is probably another reason why single and double

quotes are treated the same.

Nearly every Python application uses strings in one form or another. Strings are a

literal or scalar type, meaning they are treated by the interpreter as a singular value and are

not containers that hold other Python objects. Strings are immutable, meaning that changing

an element of a string requires creating a new string. Strings are made up of individual

characters, and such elements of strings may be accessed sequentially via slicing.

With the unification of types and classes in 2.2, there are now actually three types of

strings in Python. Both regular string (str) and Unicode string (unicode) types are actually

subclassed from an abstract class called basestring. This class cannot be instantiated, and if

you try to use the factory function to make one, you get this:

>>> basestring('foo')

Traceback (most recent call last): File "<stdin>", line 1, in <module>

TypeError: The basestring type cannot be instantiated

How to Create and Assign Strings

Creating strings is as simple as using a scalar value or having the str() factory function make

one and assigning it to a variable:

>>> aString = 'Hello World!' # using single quotes

>>> anotherString = "Python is cool!" # double quotes

>>> print aString # print, no quotes! Hello World!

>>> anotherString # no print, quotes! 'Python is cool!'

>>> s = str(range(4)) # turn list to string

>>> s

'[0, 1, 2, 3]'

How to Access Values (Characters and Substrings) in Strings

Python does not support a character type; these are treated as strings of length one,

thus also considered a substring. To access substrings, use the square brackets for slicing

along with the index or indices to obtain your substring:

>>> aString = 'Hello World!'

>>> aString[0] 'H'

>>> aString[1:5] 'ello'

>>> aString[6:] 'World!'

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The

new value can be related to its previous value or to a completely different string altogether.

>>> aString = aString[:6] + 'Python!'

>>> aString 'Hello Python!'

>>> aString = 'different string altogether'

>>> aString

'different string altogether'

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 26

Mr. P Mabu Hussain

Assistant Professor

Like numbers, strings are not mutable, so you cannot change an existing string

without creating a new one from scratch. That means that you cannot update individual

characters or substrings in a string.

However, as you can see above, there is nothing wrong with piecing together parts of

your old string into a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual

characters from an existing string. What you can do, however, is to empty the string, or to put

together another string that drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"...the (lowercase) letter

"l," for example:

>>> aString = 'Hello World!'

>>> aString = aString[:3] + aString[4:]

>>> aString 'Helo World!'

To clear or remove a string, you assign an empty string or use the del statement,

respectively:

>>> aString = ''

>>> aString ''

>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code

defining the stringeventually terminates, and the string is eventually deallocated.

1.19 Lists and Tuples

Lists

Like strings, lists provide sequential storage through an index offset and access to

single or consecutive elements through slices. However, the comparisons usually end there.

Strings consist only of characters and are immutable (cannot change individual elements),

while lists are flexible container objects that hold an arbitrary number of Python objects.

Creating lists is simple; adding to lists is easy, too, as we see in the following examples.

The objects that you can place in a list can include standard types and objects as well

as user-defined ones. Lists can contain different types of objects and are more flexible than an

array of C structs or Python arrays (available through the external array module) because

arrays are restricted to containing objects of a single type.

Lists can be populated, empty, sorted, and reversed. Lists can be grown and shrunk. They can

be taken apart and put together with other lists. Individual or multiple items can be inserted,

updated, or removed at will.

Tuples share many of the same characteristics of lists and although we have a separate

section on tuples, many of the examples and list functions are applicable to tuples as well.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 27

Mr. P Mabu Hussain

Assistant Professor

The key difference is that tuples are immutable, i.e., read-only, so any operators or functions

that allow updating lists, such as using the slice operator on the left-hand side of an

assignment, will not be valid for tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list

(empty or with elements) and perform the assignment. Lists are delimited by surrounding

square brackets ([]). You can also use the factory function.

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]

>>> anotherList = [None, 'something to see here']

>>> print aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> print anotherList

[None, 'something to see here']

>>> aListThatStartedEmpty = []

>>> print aListThatStartedEmpty []

>>> list('foo') ['f', 'o', 'o']

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with

the index or indices.

>>> aList[0] 123

>>> aList[1:4]

['abc', 4.56, ['inner', 'list']]

>>> aList[:3] [123, 'abc', 4.56]

>>> aList[3][1]

'list'

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand

side of the assignment operator, and you can add to elements in a list with the append()

method:

>>> aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> aList[2] 4.56

>>> aList[2] = 'float replacer'

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>>

>>> anotherList.append("hi, i'm new here")

>>> print anotherList

[None, 'something to see here', "hi, i'm new here"]

>>> aListThatStartedEmpty.append('not empty anymore')

>>> print aListThatStartedEmpty ['not empty anymore']

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 28

Mr. P Mabu Hussain

Assistant Professor

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly

which element(s) you are deleting or the remove() method if you do not know.

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>> del aList[1]

>>> aList

[123, 'float replacer', ['inner', 'list'], (7-9j)]

>>> aList.remove(123)

>>> aList

['float replacer', ['inner', 'list'], (7-9j)]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather, they

tend to let it go out of scope (i.e., program termination, function call completion, etc.) and be

deallocated, but if they do want to explicitly remove an entire list, they use the del statement:

del aList

Tuples

Tuples are another container type extremely similar in nature to lists. The only visible

difference between tuples and lists is that tuples use parentheses and lists use square brackets.

Functionally, there is a more significant difference, and that is the fact that tuples are

immutable. Because of this, tuples can do something that lists cannot do .be a dictionary key.

Tuples are also the default when dealing with a group of objects.

Our usual modus operandi is to present the operators and built-in functions for the

more general objects, followed by those for sequences and conclude with those applicable

only for tuples, but because tuples share so many characteristics with lists, we would be

duplicating much of our description from the previous section. Rather than providing much

repeated information, we will differentiate tuples from lists as they apply to each set of

operators and functionality, then discuss immutability and other features unique to tuples.

How to Create and Assign Tuples

Creating and assigning tuples are practically identical to creating and assigning lists, with the

exception of empty tuplesthese require a trailing comma (,) enclosed in the tuple delimiting

parentheses (()) to prevent them from being confused with the natural grouping operation of

parentheses.

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>> anotherTuple = (None, 'something to see here')

>>> print aTuple

(123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))

>>> print anotherTuple

(None, 'something to see here')

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 29

Mr. P Mabu Hussain

Assistant Professor

>>> emptiestPossibleTuple = (None,)

>>> print emptiestPossibleTuple (None,)

>>> tuple('bar') ('b', 'a', 'r')

How to Access Values in Tuples

Slicing works similarly to lists. Use the square bracket slice operator ([]) along with

the index or indices.

>>> aTuple[1:4]

('abc', 4.56, ['inner', 'tuple'])

>>> aTuple[:3] (123, 'abc', 4.56)

>>> aTuple[3][1] 'tuple'

How to Update Tuples

Like numbers and strings, tuples are immutable, which means you cannot update them

or change values of tuple elements. In Sections 6.2 and 6.3.2, we were able to take portions of

an existing string to create a new string. The same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]

>>> aTuple

(123, 'abc', (7-9j))

>>> tup1 = (12, 34.56)

>>> tup2 = ('abc', 'xyz')

>>> tup3 = tup1 + tup2

>>> tup3

(12, 34.56, 'abc', 'xyz')

How to Remove Tuple Elements and Tuples

Removing individual tuple elements is not possible. There is, of course, nothing

wrong with putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement to reduce an object's

reference count. It will be deallocated when that count is zero. Keep in mind that most of the

time one will just let an object go out of scope rather than using del, a rare occurrence in

everyday Python programming.

del aTuple

1.20 Mapping and Set Types

Mapping Type: Dictionaries

Dictionaries are the sole mapping type in Python. Mapping objects have a one-to-

many correspondence between hashable values (keys) and the objects they represent (values).

They are similar to Perl hashes and can be generally considered as mutable hash tables. A

dictionary object itself is mutable and is yet another container type that can store any number

of Python objects, including other container types.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 30

Mr. P Mabu Hussain

Assistant Professor

What makes dictionaries different from sequence type containers like lists and tuples is the

way the data are stored and accessed.

Sequence types use numeric keys only (numbered sequentially as indexed offsets

from the beginning of the sequence). Mapping types may use most other object types as keys;

strings are the most common. Unlike sequence type keys, mapping keys are often, if not

directly, associated with the data value that is stored. But because we are no longer using

"sequentially ordered" keys with mapping types, we are left with an unordered collection of

data. As it turns out, this does not hinder our use because mapping types do not require a

numeric value to index into a container to obtain the desired item. With a key, you are

"mapped" directly to your value, hence the term "mapping type." The reason why they are

commonly referred to as hash tables is because that is the exact type of object that

dictionaries are one of Python's most powerful data types.

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of

whether the dictionary has elements or not:

>>> dict1 = {}

>>> dict2 = {'name': 'earth', 'port': 80}

>>> dict1, dict2

({}, {'port': 80, 'name': 'earth'})

In Python versions 2.2 and newer, dictionaries may also be created using the factory

function dict(). We discuss more examples later when we take a closer look at dict(), but

here's a sneak peek for now:

>>> fdict = dict((['x', 1], ['y', 2]))

>>> fdict

{'y': 2, 'x': 1}

In Python versions 2.3 and newer, dictionaries may also be created using a very convenient

built-in method for creating a "default" dictionary whose elements all have the same value

(defaulting to None if not given), fromkeys():

>>> ddict = {}.fromkeys(('x', 'y'), -1)

>>> ddict

{'y': -1, 'x': -1}

>>> edict = {}.fromkeys(('foo', 'bar'))

>>> edict #output:{'foo': None, 'bar': None}

How to Access Values in Dictionaries

To traverse a dictionary (normally by key), you only need to cycle through its keys,

like this:

>>> dict2 = {'name': 'earth', 'port': 80}

>>>

>>>> for key in dict2.keys():

... print 'key=%s, value=%s' % (key, dict2[key])

key=name, value=earth key=port, value=80

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 31

Mr. P Mabu Hussain

Assistant Professor

Beginning with Python 2.2, you no longer need to use the keys() method to extract a

list of keys to loop over. Iterators were created to simplify accessing of sequence-like objects

such as dictionaries and files. Using just the dictionary name itself will cause an iterator over

that dictionary to be used in a for loop:

>>> dict2 = {'name': 'earth', 'port': 80}

>>>

>>>> for key in dict2:

... print 'key=%s, value=%s' % (key, dict2[key])

...

key=name, value=earth key=port, value=80

To access individual dictionary elements, you use the familiar square brackets along

with the key to obtain its value:

>>> dict2['name'] 'earth'

>>>

>>> print 'host %s is running on port %d' % \

... (dict2['name'], dict2['port']) host earth is running on port 80

Dictionary dict1 defined above is empty while dict2 has two data items. The keys in

dict2 are 'name' and 'port', and their associated value items are 'earth' and 80, respectively.

Access to the value is through the key, as you can see from the explicit access to the 'name'

key.

If we attempt to access a data item with a key that is not part of the dictionary, we get

an error:

>>> dict2['server'] Traceback (innermost last):

File "<stdin>", line 1, in ?

KeyError: server

In this example, we tried to access a value with the key 'server' which, as you know

from the code above, does not exist. The best way to check if a dictionary has a specific key

is to use the dictionary's has_key() method, or better yet, the in or not in operators starting

with version 2.2. The has_key() method will be obsoleted in future versions of Python, so it is

best to just use in or not in.

We will introduce all of a dictionary's methods below. The Boolean has_key() and the

in and not in operators are Boolean, returning true if a dictionary has that key and False

otherwise. (In Python versions preceding Boolean constants [older than 2.3], the values

returned are 1 and 0, respectively.)

>>> 'server' in dict2 # or dict2.has_key('server') False

>>> 'name' in dict # or dict2.has_key('name') True

>>> dict2['name'] 'earth'

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 32

Mr. P Mabu Hussain

Assistant Professor

Here is another dictionary example mixing the use of numbers and strings as keys:

>>> dict3 = {}

>>> dict3[1] = 'abc'

>>> dict3['1'] = 3.14159

>>> dict3[3.2] = 'xyz'

>>> dict3

{3.2: 'xyz', 1: 'abc', '1': 3.14159}

Rather than adding each key-value pair individually, we could have also entered all

the data for dict3 at the same time:

dict3 = {3.2: 'xyz', 1: 'abc', '1': 3.14159}

Creating the dictionary with a set key-value pair can be accomplished if all the data

items are known in advance (obviously). The goal of the examples using dict3 is to illustrate

the variety of keys that you can use. If we were to pose the question of whether a key for a

particular value should be allowed to change, you would probably say, "No." Right?

Not allowing keys to change during execution makes sense if you think of it this way:

Let us say that you created a dictionary element with a key and value. Somehow during

execution of your program, the key changed, perhaps due to an altered variable. When you

went to retrieve that data value again with the original key, you got a KeyError (since the key

changed), and you had no idea how to obtain your value now because the key had somehow

been altered. For this reason, keys must be hashable, so numbers and strings are fine, but lists

and other dictionaries are not. (See Section 7.5.2 for why keys

must be hashable.)

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair),

modifying an existing entry, or deleting an existing entry (see below for more details on

removing an entry).

>>> dict2['name'] = 'venus' # update existing entry

>>> dict2['port'] = 6969 # update existing entry

>>> dict2['arch'] = 'sunos5' # add new entry

>>> print 'host %(name)s is running on port %(port)d' % dict2

host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The

print statement above illustrates an alternative way of using the string format operator (%),

specific to dictionaries. Using the dictionary argument, you can shorten the print request

somewhat because naming of the dictionary occurs only once, as opposed to occurring for

each element using a tuple argument.You may also add the contents of an entire dictionary to

another dictionary by using the update() built- in method.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 33

Mr. P Mabu Hussain

Assistant Professor

How to Remove Dictionary Elements and Dictionaries

Removing an entire dictionary is not a typical operation. Generally, you either remove

individual dictionary elements or clear the entire contents of a dictionary. However, if you

really want to "remove" an entire dictionary, use the del statement. Here are some deletion

examples for dictionaries and dictionary elements:

del dict2['name'] # remove entry with key 'name' dict2.clear() # remove all entries in

dict1

del dict2 # delete entire dictionary dict2.pop('name') # remove & return entry w/key

Set Types

In mathematics, a set is any collection of distinct items, and its members are often

referred to as set elements. Python captures this essence in its set type objects. A set object is

an unordered collection of hashable values. Yes, set members would make great dictionary

keys. Mathematical sets translate to Python set objects quite effectively and testing for set

membership and operations such as union and intersection work in Python as expected.

Like other container types, sets support membership testing via in and not in

operators, cardinality using the len() BIF, and iteration over the set membership using for

loops. However, since sets are unordered, you do not index into or slice them, and there are

no keys used to access a value.

There are two different types of sets available, mutable (set) and immutable

(frozenset). As you can imagine, you are allowed to add and remove elements from the

mutable form but not the immutable. Note that mutable sets are not hashable and thus cannot

be used as either a dictionary key or as an element of another set. The reverse is true for

frozen sets, i.e., they have a hash value and can be used as a dictionary key or a member of a

set.

How to Create and Assign Set Types

There is no special syntax for sets like there is for lists ([]) and dictionaries ({ })

for example. Lists and dictionaries can also be created with their corresponding factory

functions list() and dict(), and that is also the only way sets can be created, using their factory

functions set() and frozenset():

>>> s = set('cheeseshop')

>>> s

set(['c', 'e', 'h', 'o', 'p', 's'])

>>> t = frozenset('bookshop')

>>> t

frozenset(['b', 'h', 'k', 'o', 'p', 's'])

>>> type(s)

<type 'set'>

>>> type(t)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 34

Mr. P Mabu Hussain

Assistant Professor

<type 'frozenset'>

>>> len(s) 6

>>> len(s) == len(t) True

>>> s == t

False

How to Access Values in Sets

You are either going to iterate through set members or check if an item is a member

(or not) of a set:

>>> 'k' in s False

>>> 'k' in t True

>>> 'c' not in t True

>>> for i in s:

... print i

...

c e h o p s

How to Update Sets

You can add and remove members to and from a set using various built-in methods

and operators:

>>> s.add('z')

>>> s

set(['c', 'e', 'h', 'o', 'p', 's', 'z'])

>>> s.update('pypi')

>>> s

set(['c', 'e', 'i', 'h', 'o', 'p', 's', 'y', 'z'])

>>> s.remove('z')

>>> s

set(['c', 'e', 'i', 'h', 'o', 'p', 's', 'y'])

>>> s -= set('pypi')

>>> s

set(['c', 'e', 'h', 'o', 's'])

As mentioned before, only mutable sets can be updated. Any attempt at such

operations on immutable sets is met with an exception:

>>> t.add('z')

Traceback (most recent call last): File "<stdin>", line 1, in ?

AttributeError: 'frozenset' object has no attribute 'add'

How to Remove Set Members and Sets

We saw how to remove set members above. As far as removing sets themselves, like

any Python object, you can let them go out of scope or explicitly remove them from the

current namespace with del. If the reference count goes to zero, then it is tagged for garbage

collection.

>>> del s

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 35

Mr. P Mabu Hussain

Assistant Professor

UNIT II – FILES & EXCEPTIONS IN PYTHON

2.1 Files - File Objects
File objects can be used to access not only normal disk files, but also any other type of

"file" that uses that abstraction. Once the proper "hooks" are installed, you can access other

objects with file-style interfaces in the same manner you would access normal files.

You will find many cases where you are dealing with "file-like" objects as you

continue to develop your Python experience. Some examples include "opening a URL" for

reading a Web page in real-time and launching a command in a separate process and

communicating to and from it like a pair of simultaneously open files, one for write and the

other for read.

The open() built-in function (see below) returns a file object that is then used for all

succeeding operations on the file in question. There are a large number of other functions that

return a file or file- like object. One primary reason for this abstraction is that many

input/output data structures prefer to adhere to a common interface. It provides consistency in

behavior as well as implementation. Operating systems like Unix even feature files as an

underlying and architectural interface for communication.

Remember, files are simply a contiguous sequence of bytes. Anywhere data need to be sent

usually involves a byte stream of some sort, whether the stream occurs as individual bytes or

blocks of data

2.2 File Built-in Function [open()]
As the key to opening file doors, the open() [and file()] built-in function provides a

general interface to initiate the file input/output (I/O) process. The open() BIF returns a file

object on a successful opening of the file or else results in an error situation. When a failure

occurs, Python generates or raises an IOError exceptionwe will cover errors and exceptions in

the next chapter.

The basic syntax of the open() built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

The file_name is a string containing the name of the file to open. It can be a relative

or absolute/full pathname. The access_mode optional variable is also a string, consisting of a

set of flags indicating which mode to open the file with. Generally, files are opened with the

modes 'r,' 'w,'or 'a,' representing read, write, and append, respectively. A 'U' mode also exists

for universal NEWLINE support (see below).

Any file opened with mode 'r' or 'U' must exist. Any file opened with 'w' will be

truncated first if it exists, and then the file is (re)created. Any file opened with 'a' will be

opened for append. All writes to files opened with 'a' will be from end-of-file, even if you

seek elsewhere during access. If the file does not exist, it will be created, making it the same

as if you opened the file in 'w' mode. If you are a C programmer, these are the same file open

modes used for the C library function fopen().

There are other modes supported by fopen() that will work with Python's open().

These include the '+' for read-write access and 'b' for binary access.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 36

Mr. P Mabu Hussain

Assistant Professor

One note regarding the binary flag: 'b' is antiquated on all Unix systems that are

POSIX-compliant (including Linux) because they treat all files as binary files, including text

files. Here is an entry from the Linux manual page for fopen(), from which the Python open

() function is derived:

The mode string can also include the letter "b" either as a last character or as a

character between the characters in any of the two-character strings described above. This is

strictly for compatibility with ANSI C3.159-1989 ("ANSI C") and has no effect; the "b" is

ignored on all POSIX conforming systems, including Linux. (Other systems may treat text

files and binary files differently, and adding the "b" may be a good idea if you do I/O to a

binary file and expect that your program may be ported to non-Unix environments.)

2.3 File Built-in Methods
Once open() has completed successfully and returned a file object, all subsequent

access to the file transpires with that "handle." File methods come in four different categories:

input, output, movement within a file, which we will call "intra-file motion," and

miscellaneous. A summary of all file methods can be found in Table 9.3. We will now

discuss each category.

Input

The read() method is used to read bytes directly into a string, reading at most the

number of bytes indicated. If no size is given (the default value is set to integer -1) or size is

negative, the file will be read to the end. It will be phased out and eventually removed in a

future version of Python.

The readline() method reads one line of the open file (reads all bytes until a line-

terminating character like NEWLINE is encountered). The line, including termination

character(s), is returned as a string. Like read(), there is also an optional size option, which, if

not provided, defaults to -1, meaning read until the line-ending characters (or EOF) are

found. If present, it is possible that an incomplete line is returned if it exceeds size bytes.

The readlines() method does not return a string like the other two input methods.

Instead, it reads all (remaining) lines and returns them as a list of strings. Its optional

argument, sizhint, is a hint on the maximum size desired in bytes. If provided and greater

than zero, approximately sizhint bytes in whole lines are read (perhaps slightly more to round

up to the next buffer size) and returned as a list.

In Python 2.1, a new type of object was used to efficiently iterate over a set of lines

from a file: the xreadlines object (found in the xreadlines module). Calling file.xreadlines()

was equivalent to xreadlines. xreadlines(file). Instead of reading all the lines in at once,

xreadlines() reads in chunks at a time, and thus were optimal for use with for loops in a

memory-conscious way. However, with the introduction of iterators and the new file iteration

in Python 2.3, it was no longer necessary to have an xreadlines() method because it is the

same as using iter(file), or in a for loop, is replaced by for eachLine in file. Easy come, easy

go.

Another odd bird is the readinto() method, which reads the given number of bytes into

a writable buffer object, the same type of object returned by the unsupported buffer() built-in

function. (Since buffer() is not supported, neither is readinto().)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 37

Mr. P Mabu Hussain

Assistant Professor

Output

The write() built-in method has the opposite functionality as read() and readline(). It

takes a string that can consist of one or more lines of text data or a block of bytes and writes

the data to the file.

The writelines() method operates on a list just like readlines(), but takes a list of

strings and writes them out to a file. Line termination characters are not inserted between

each line, so if desired, they must be added to the end of each line before writelines() is

called.

Note that there is no "writeline()" method since it would be equivalent to calling

write() with a single line string terminated with a NEWLINE character.

2.4 File Built-in Attributes
File objects also have data attributes in addition to methods. These attributes hold

auxiliary data related to the file object they belong to, such as the file name (file.name), the

mode with which the file was opened (file.mode), whether the file is closed (file.closed), and

a flag indicating whether an additional space character needs to be displayed before

successive data items when using the print statement (file.softspace). Table 9.4 lists these

attributes along with a brief description of each.

Attributes for File Objects

File Object Attribute Description

file.closed TRue if file is closed and False otherwise

file.encoding Encoding that this file useswhen Unicode strings are written to

file, they will be converted to byte strings using file.encoding; a

value of None indicates that the system default encoding for

converting Unicode strings should be used

file.mode Access mode with which file was opened

file.name Name of file

file.newlines None if no line separators have been read, a string consisting of

one type of line separator, or a tuple containing all types of line

termination characters read so far
file.softspace 0 if space explicitly required with print, 1 otherwise; rarely

used by the programmergenerally for internal use only.

2.5 Standard Files
There are generally three standard files that are made available to you when your

program starts. These are standard input (usually the keyboard), standard output (buffered

output to the monitor or display), and standard error (unbuffered output to the screen). (The

"buffered" or "unbuffered" output refers to that third argument to open()). These files are

named stdin, stdout, and stderr and take their names from the C language. When we say these

files are "available to you when your program starts," that means that these files are pre-

opened for you, and access to these files may commence once you have their file handles.

Python makes these file handles available to you from the sys module. Once you

import sys, you have access to these files as sys.stdin, sys.stdout, and sys.stderr. The print

statement normally outputs to sys.stdout while the raw_input() built-in function receives its

input from sys.stdin.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 38

Mr. P Mabu Hussain

Assistant Professor

Just remember that since sys.* are files, you have to manage the line separation

characters. The print

statement has the built-in feature of automatically adding one to the end of a string to output.

2.6 Command-line Arguments
The sys module also provides access to any command-line arguments via sys.argv.

Command-line arguments are those arguments given to the program in addition to the script

name on invocation. Historically, of course, these arguments are so named because they are

given on the command line along with the program name in a text-based environment like a

Unix- or DOS-shell. However, in an IDE or GUI environment, this would not be the case.

Most IDEs provide a separate window with which to enter your "command-line arguments."

These, in turn, will be passed into the program as if you started your application from the

command line.

Those of you familiar with C programming may ask, "Where is argc?" The names

"argc" and "argv" stand for "argument count" and "argument vector," respectively. The argv

variable contains an array of strings consisting of each argument from the command line

while the argc variable contains the number of arguments entered. In Python, the value for

argc is simply the number of items in the sys.argv list, and the first element of the list,

sys.argv[0], is always the program name.

Summary:

 sys.argv is the list of command-line arguments

 len(sys.argv) is the number of command-line arguments(aka argc) Let us create a

small test program called argv.py with the following lines: import sys

print 'you entered', len(sys.argv), 'arguments...'
print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

$ argv.py 76 tales 85 hawk you entered 5 arguments...

they were: ['argv.py', '76', 'tales', '85', 'hawk']

Are command-line arguments useful? Commands on Unix-based systems are

typically programs that take input, perform some function, and send output as a stream of

data. These data are usually sent as input directly to the next program, which does some other

type of function or calculation and sends the new output to another program, and so on.

Rather than saving the output of each program and potentially taking up a good amount of

disk space, the output is usually "piped" into the next program as its input.

This is accomplished by providing data on the command line or through standard

input. When a program displays or sends output to the standard output file, the result would

be displayed on the screenunless that program is also "piped" to another program, in which

case that standard output file is really the standard input file of the next program. I assume

you get the drift by now!

Command-line arguments allow a programmer or administrator to start a program

perhaps with different behavioral characteristics. Much of the time, this execution takes place

in the middle of the night and runs as a batch job without human interaction. Command-line

arguments and program options enable this type of functionality.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 39

Mr. P Mabu Hussain

Assistant Professor

As long as there are computers sitting idle at night and plenty of work to be done,

there will always be a need to run programs in the background on our veryexpensive

"calculators."

Python has two modules to help process command-line arguments. The first (and

original), getopt is easier but less sophisticated, while optparse, introduced in Python 2.3, is

more powerful library and is much more object-oriented than its predecessor. If you are just

getting started, we recommend getopt, but once you outgrow its feature set, then check out

optparse.

2.7 File System
Access to your file system occurs mostly through the Python os module. This module

serves as the primary interface to your operating system facilities and services from Python.

The os module is actually a front-end to the real module that is loaded, a module that is

clearly operating systemdependent. This "real" module may be one of the following: posix

(Unix-based, i.e., Linux, MacOS X, *BSD, Solaris, etc.), nt (Win32), mac (old MacOS), dos

(DOS), os2 (OS/2), etc. You should never import those modules directly. Just import os and

the appropriate module will be loaded, keeping all the underlying work hidden from sight.

Depending on what your system supports, you may not have access to some of the attributes,

which may be available in other operating system modules.

In addition to managing processes and the process execution environment, the os

module performs most of the major file system operations that the application developer may

wish to take advantage of. These features include removing and renaming files, traversing the

directory tree, and managing file accessibility.

2.8 File Execution
Whether we want to simply run an operating system command, invoke a binary

executable, or another type of script (perhaps a shell script, Perl, or Tcl/Tk), this involves

executing another file somewhere else on the system. Even running other Python code may

call for starting up another Python interpreter, although that may not always be the case.

Please proceed there if you are interested in how to start other programs, perhaps even

communicating with them, and for general information regarding Python's execution

environment.

2.9 Persistent Storage Modules
In many of the exercises in this text, user input is required. After many iterations, it

may be somewhat frustrating being required to enter the same data repeatedly. The same may

occur if you are entering a significant amount of data for use in the future. This is where it

becomes useful to have persistent storage, or a way to archive your data so that you may

access them at a later time instead of having to re-enter all of that information. When simple

disk files are no longer acceptable and full relational database management systems

(RDBMSs) are overkill, simple persistent storage fills the gap. The majority of the persistent

storage modules deals with storing strings of data, but there are ways to archive Python

objects as well.

pickle and marshal Modules

Python provides a variety of modules that implement minimal persistent storage. One

set of modules (marshal and pickle) allows for pickling of Python objects.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 40

Mr. P Mabu Hussain

Assistant Professor

Pickling is the process whereby objects more complex than primitive types can be

converted to a binary set of bytes that can be stored or transmitted across the network, then be

converted back to their original object forms. Pickling is also known as flattening, serializing,

or marshalling. Another set of modules (dbhash/bsddb, dbm, gdbm, dumbdbm) and their

"manager" (anydbm) can provide persistent storage of Python strings only.

As we mentioned before, both marshal and pickle can flatten Python objects. These

modules do not provide "persistent storage" per se, since they do not provide a namespace for

the objects, nor can they provide concurrent write access to persistent objects. What they can

do, however, is to pickle Python objects to allow them to be stored or transmitted. Storage, of

course, is sequential in nature (you store or transmit objects one after another). The difference

between marshal and pickle is that marshal can handle only simple Python objects (numbers,

sequences, mapping, and code) while pickle can transform recursive objects, objects that are

multi-referenced from different places, and user-defined classes and instances. The pickle

module is also available in a turbo version called cPickle, which implements all functionality

in C.

DBM-style Modules

The *db* series of modules writes data in the traditional DBM format. There are a

large number of different implementations: dbhash/bsddb, dbm, gdbm, and dumbdbm. If you

are particular about any specific DBM module, feel free to use your favorite, but if you are

not sure or do not care, the generic anydbm module detects which DBM-compatible modules

are installed on your system and uses the "best" one at its disposal. The dumbdbm module is

the most limited one, and is the default used if none of the other packages is available. These

modules do provide a namespace for your objects, using objects that behave similar to a

combination of a dictionary object and a file object. The one limitation of these systems is

that they can store only strings. In other words, they do not serialize Python objects.

shelve Module

Finally, we have a somewhat more complete solution, the shelve module. The shelve

module uses the anydbm module to find a suitable DBM module, then uses cPickle to

perform the pickling process. The shelve module permits concurrent read access to the

database file, but not shared read/write access. This is about as close to persistent storage as

you will find in the Python standard library. There may beother external extension modules

that implement "true" persistent storage. The diagram in Figure shows the relationship

between the pickling modules and the persistent storage modules, and how the shelve object

appears to be the best of both worlds.

2.10 Related Modules
The fileinput module iterates over a set of input files and reads their contents one line

at a time, allowing you to iterate over each line, much like the way the Perl (<>) operator

works without any provided arguments. File names that are not explicitly given will be

assumed to be provided from the command-line.

The glob and fnmatch modules allow for file name pattern-matching in the good old-

fashioned Unix shell- style, for example, using the asterisk (*) wildcard character for all

string matches and the (?) for matching single characters.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 41

Mr. P Mabu Hussain

Assistant Professor

Figure: 2.1 Python modules for serialization and persistency

2.11 Exceptions - Exceptions in Python
As we were going through some of the, you no doubt noticed what happens when

your program "crashes" or terminates due to unresolved errors. A "trace back" notice appears

along with a notice containing as much diagnostic information as the interpreter can give you,

including the error name, reason, and perhaps even the line number near or exactly where the

error occurred. All errors have a similar format, regardless of whether running within the

Python interpreter or standard script execution, providing a consistent error interface. All

errors, whether they be syntactical or logical, result from behavior incompatible with the

Python interpreter and cause exceptions to be raised.

Let us take a look at some exceptions now.

NameError: attempt to access an undeclared variable

>>> foo

Traceback (innermost last):

File "<stdin>", line 1, in ? NameError: name 'foo' is not defined

NameError indicates access to an uninitialized variable. The offending identifier was not

found in the Python interpreter's symbol table. We will be discussing namespaces in the next

two chapters, but as an introduction, regard them as "address books" linking names to

objects. Any object that is accessible should be listed in a namespace. Accessing a variable

entails a search by the interpreter, and if the name requested is not found in any of the

namespaces, a NameError exception will be generated.

ZeroDivisionError: division by any numeric zero

>>> 1/0

Traceback (innermost last):

File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo by zero

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 42

Mr. P Mabu Hussain

Assistant Professor

Our example above used floats, but in general, any numeric division-by-zero will result in a

ZeroDivisionError exception.

SyntaxError: Python interpreter syntax error

>>> for

File "<string>", line 1

for

SyntaxError: invalid syntax
SyntaxError exceptions are the only ones that do not occur at run-time. They indicate

an improperly constructed piece of Python code which cannot execute until corrected. These

errors are generated at compile-time, when the interpreter loads and attempts to convert your

script to Python bytecode. These may also occur as a result of importing a faulty module.

IndexError: request for an out-of-range index for sequence

>>> aList = []

>>> aList[0]

Traceback (innermost last): File "<stdin>", line 1, in ?

IndexError: list index out of range

IndexError is raised when attempting to access an index that is outside the valid range of a

sequence.

KeyError: request for a non-existent dictionary key

>>> aDict = {'host': 'earth', 'port': 80}

>>> print aDict['server'] Traceback (innermost last):

File "<stdin>", line 1, in ?
KeyError: server

Mapping types such as dictionaries depend on keys to access data values. Such values

are not retrieved if an incorrect/nonexistent key is requested. In this case, a KeyErroris raised

to indicate such an incident has occurred.

IOError: input/output error

>>> f = open("blah") Traceback (innermost last):

File "<stdin>", line 1, in ?

IOError: [Errno 2] No such file or directory: 'blah'

Attempting to open a nonexistent disk file is one example of an operating system input/output

(I/O) error. Any type of I/O error raises an IOError exception.

AttributeError: attempt to access an unknown object attribute

>>> class myClass(object):

... pass

>>> myInst = myClass()

>>> myInst.bar = 'spam'

>>> myInst.bar 'spam'

>>> myInst.foo

Traceback (innermost last): File "<stdin>", line 1, in ?

AttributeError: foo

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 43

Mr. P Mabu Hussain

Assistant Professor

In our example, we stored a value in myInst.bar, the bar attribute of instance myInst. Once an

attribute has been defined, we can access it using the familiar dotted-attribute notation, but if

it has not, as in our case with the foo (non-)attribute, an AttributeError occurs.

2.12 Detecting and Handling Exceptions
Exceptions can be detected by incorporating them as part of a try statement. Any code

suite of a Try statement will be monitored for exceptions.

There are two main forms of the Try statement: Try-except and try-finally. These

statements are mutually exclusive, meaning that you pick only one of them. A try statement

can be accompanied by one or more except clauses, exactly one finally clause, or a hybrid

try-except-finally combination.

try-except statements allow one to detect and handle exceptions. There is even an

optional else clause for situations where code needs to run only when no exceptions are

detected. Meanwhile, TRy-finally statements allow only for detection and processing of any

obligatory cleanup (whether or not exceptions occur), but otherwise have no facility in

dealing with exceptions. The combination, as you might imagine, does both.

try-except Statement

The TRy-except statement (and more complicated versions of this statement) allows

you to define a section of code to monitor for exceptions and also provides the mechanism to

execute handlers for exceptions.

The syntax for the most general try-except statement is given below. It consists of the

keywords along with the try and except blocks (try_suite and except_suite) as well as

optionally saving the reason of failure:

try:

try_suite # watch for exceptions here

except Exception[, reason]:

except_suite # exception-handling code

Let us give one example, then explain how things work. We will use our IOError example

from above. We can make our code more robust by adding a try-except "wrapper" around the

code:

>>> try:

... f = open('blah', 'r')

... except IOError, e:

... print 'could not open file:', e

...

could not open file: [Errno 2] No such file or directory

As you can see, our code now runs seemingly without errors. In actuality, the same

IOError still occurred when we attempted to open the nonexistent file. The difference? We

added code to both detect and handle the error. When the IOError exception was raised, all

we told the interpreter to do was to output a diagnostic message. The program continues and

does not "bomb out" as our earlier examplea minor illustration of the power of exception

handling. So what is really happening codewise?

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 44

Mr. P Mabu Hussain

Assistant Professor

During runtime, the interpreter attempts to execute all the code within the try

statement. If an exception does not occur when the code block has completed, execution

resumes past the except statement. When the specified exception named on the except

statement does occur, we save the reason, and control flow immediately continues in the

handler (all remaining code in the TRy clause is skipped) where we display our error message

along with the cause of the error.

2.13 Context Management
The unification of TRy-except and TRy-finally as described above makes programs

more "Pythonic," meaning, among many other characteristics, simpler to write and easier to

read. Python already does a great job at hiding things under the covers so all you have to do is

worry about how to solve the problem you have. (Can you imagine porting a complex Python

application into C++ or Java?!?)

Another example of hiding lower layers of abstraction is the with statement, made

official as of Python 2.6. (It was introduced in 2.5 as a preview and to serve warnings for

those applications using with as an identifier that it will become a keyword in 2.6. To use this

feature in 2.5, you must import it with from future importwith_statement.)

Like try-except-finally, the with statement, has a purpose of simplifying code that

features the common idiom of using the TRy-except and try-finally pairs in tandem. The

specific use that the with statement targets is when TRy-except and try-finally are used

together in order to achieve the sole allocation of a shared resource for execution, then

releasing it once the job is done. Examples include files (data, logs, database, etc.), threading

resources and synchronization primitives, database connections, etc.

However, instead of just shortening the code and making it easier to use like try-

except-finally, the with statement's goal is to remove the TRy, except, and finally keywords

and the allocation and release code from the picture altogether. The basic syntax of the with

statement looks like this:

with context_expr [as var]:

with_suite

It looks quite simple, but making it work requires some work under the covers. The

reason is it not as simple as it looks is because you cannot use the with statement merely with

any expression in Python. It only works with objects that support what is called the context

management protocol. This simply means that only objects that are built with "context

management" can be used with a with statement. We will describe what that means soon.

Now, like any new video game hardware, when this feature was released, some folks

out there took the time to develop new games for it so that you can play when you open the

box. Similarly, there were already some Python objects that support the protocol. Here is a

short list of the first set:

 file

 decimal.Context

 tHRead.LockType

 threading.Lock

 threading.RLock

 threading.Condition

 tHReading.Semaphore

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 45

Mr. P Mabu Hussain

Assistant Professor

Since files are first on the list and the simplest example, here is a code snippet of what it

looks like to use a with statement:

with open('/etc/passwd', 'r') as f:

for eachLine in f:

...do stuff with eachLine or f...

2.14 Exceptions as Strings
Prior to Python 1.5, standard exceptions were implemented as strings. However, this

became limiting in that it did not allow for exceptions to have relationships to each other.

With the advent of exception classes, this is no longer the case. As of 1.5, all standard

exceptions are now classes. It is still possible for programmers to generate their own

exceptions as strings, but we recommend using exception classes from now on.

For backward compatibility, it is possible to revert to string-based exceptions. Starting

the Python interpreter with the command-line option -Xwill provide you with the standard

exceptions as strings. This feature will be obsolete beginning with Python 1.6.

Python 2.5 begins the process of deprecating string exceptions from Python forever.

In 2.5, raise of string exceptions generates a warning. In 2.6, the catching of string exceptions

results in a warning. Since they are rarely used and are being deprecated, we will no longer

consider string exceptions within the scope of this book and have removed it. (You may find

the original text in prior editions of this book.) The only point of relevance and the final

thought is a caution: You may use an external or third- party module, which may still have

string exceptions. String exceptions are a bad idea anyway. One reader vividly recalls seeing

Linux RPM exceptions with spelling errors in the exception text.

2.15 Raising Exceptions
The interpreter was responsible for raising all of the exceptions we have seen so far.

These exist as a result of encountering an error during execution. A programmer writing an

API may also wish to throw an exception on erroneous input, for example, so Python

provides a mechanism for the programmer to explicitly generate an exception: the raise

statement.

raise Statement Syntax and Common Usage

The raise statement is quite flexible with the arguments it supports, translating to a

large number of different formats supported syntactically. The general syntax for raise is:

raise [SomeException [, args [, traceback]]]

The first argument, SomeException, is the name of the exception to raise. If present, it

must either be a string, class, or instance (more below). SomeException must be given if any

of the other arguments (args or traceback) are present.

The second expression contains optional args (aka parameters, values) for the

exception. This value is either a single object or a tuple of objects. When exceptions are

detected, the exception arguments are always returned as a tuple. If args is a tuple, then that

tuple represents the same set of exception arguments that are given to the handler. If args is a

single object, then the tuple will consist solely of this one object (i.e., a tuple with one

element). In most cases, the single argument consists of a string indicating the cause of the

error. When a tuple is given, it usually equates to an error string, an error number, and

perhaps an error location, such as a file, etc.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 46

Mr. P Mabu Hussain

Assistant Professor

The final argument, TRaceback, is also optional (and rarely used in practice), and, if

present, is the traceback object used for the exceptionnormally a traceback object is newly

created when an exception is raised. This third argument is useful if you want to reraise an

exception (perhaps to point to the previous location from the current). Arguments that are

absent are represented by the value None.

The most common syntax used is when SomeException is a class. No additional

parameters are ever required, but in this case, if they are given, they can be a single object

argument, a tuple of arguments, or an exception class instance. If the argument is an instance,

then it can be an instance of the given class or a derived class (subclassed from a pre-existing

exception class). No additional arguments (i.e., exception arguments) are permitted if the

argument is an instance.

2.16 Assertions
Assertions are diagnostic predicates that must evaluate to Boolean true; otherwise, an

exception is raised to indicate that the expression is false. These work similarly to the assert

macros, which are part of the C language preprocessor, but in Python these are runtime

constructs (as opposed to precompile directives).

If you are new to the concept of assertions, no problem. The easiest way to think of an

assertion is to liken it to a raise-if statement (or to be more accurate, a raise-if-not statement).

An expression is tested, and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, introduced back in version 1.5.

assert Statement

The assert statement evaluates a Python expression, taking no action if the assertion

succeeds (similar to a pass statement), but otherwise raising an AssertionError exception. The

syntax for assert is:

assert expression [, arguments]

Here are some examples of the use of the assert statement:

assert 1 == 1

assert 2 + 2 == 2 * 2

assert len(['my list', 12]) < 10

assert range(3) == [0, 1, 2]

AssertionError exceptions can be caught and handled like any other exception using

the TRy-except statement, but if not handled, they will terminate the program and produce a

traceback similar to the following:

>>> assert 1 == 0

Traceback (innermost last): File "<stdin>", line 1, in ?

AssertionError

As with the raise statement we investigated in the previous section, we can provide an

exception argument to our assert command:

>>> assert 1 == 0, 'One does not equal zero silly!' Traceback (innermost last):

File "<stdin>", line 1, in ?

AssertionError: One does not equal zero silly!

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 47

Mr. P Mabu Hussain

Assistant Professor

Here is how we would use a TRy-except statement to catch an AssertionErrorexception:

try:

assert 1 == 0, 'One does not equal zero silly!'

except AssertionError, args:

print '%s: %s' % (args. class . name , args)

Executing the above code from the command line would result in the following output:

AssertionError: One does not equal zero silly!

To give you a better idea of how assert works, imagine how the assert statement may be

implemented in Python if written as a function. It would probably look something like this:

def assert(expr, args=None):

if debug and not expr:

raise AssertionError, args

The first if statement confirms the appropriate syntax for the assert, meaning that expr

should be an expression. We compare the type of expr to a real expression to verify. The

second part of the function evaluates the expression and raises AssertionError, if necessary.

The built-in variable debug is 1 under normal circumstances, 0 when optimization is

requested (command-line option -O).

2.17 Standard Exceptions
As of Python 2.5, all exceptions are new-style classes and are ultimately subclassed

from BaseException. At this release, SystemExit and KeyboardInterrupt were taken out of the

hierarchy for Exception and moved up to being under BaseException. This is to allow

statements like except Exception to catch all errors and not program exit conditions.

From Python 1.5 through Python 2.4.x, exceptions were classic classes, and prior to

that, they were strings. String-based exceptions are no longer acceptable constructs and are

officially deprecated beginning with 2.5, where you will not be able to raise string

exceptions. In 2.6, you cannot catch them.

There is also a requirement that all new exceptions be ultimately subclassed from

BaseException so that all exceptions will have a common interface. This will transition will

begin with Python 2.7 and continue through the remainder of the 2.x releases.

2.18 Creating Exceptions
Although the set of standard exceptions is fairly wide-ranging, it may be

advantageous to create your own exceptions. One situation is where you would like

additional information from what a standard or module-specific exception provides. We will

present two examples, both related to IOError.

IOError is a generic exception used for input/output problems, which may arise from

invalid file access or other forms of communication. Suppose we wanted to be more specific

in terms of identifying the source of the problem. For example, for file errors, we want to

have a FileError exception that behaves like IOError, but with a name that has more meaning

when performing file operations.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 48

Mr. P Mabu Hussain

Assistant Professor

Another exception we will look at is related to network programming with sockets.

The exception generated by the socket module is called socket.error and is not a built-in

exception. It is subclassed from the generic Exception exception. However, the exception

arguments from socket.error closely resemble those of IOError exceptions, so we are going to

define a new exception called NetworkError, which subclasses from IOError but contains at

least the information provided by socket.error.

2.19 Why Exceptions (Now)?
There is no doubt that errors will be around as long as software is around. The

difference in today's fast- paced computing world is that our execution environments have

changed, and so has our need to adapt error-handling to accurately reflect the operating

context of the software that we develop. Modern-day applications generally run as self-

contained graphical user interfaces (GUIs) or in a client/server architecture such as the Web.

The ability to handle errors at the application level has become even more important

recently in that users are no longer the only ones directly running applications. As the Internet

and online electronic commerce become more pervasive, Web servers will be the primary

users of application software. This means that applications cannot just fail or crash outright

anymore, because if they do, system errors translate to browser errors, and these in turn lead

to frustrated users. Losing eyeballs means losing advertising revenue and potentially

significant amounts of irrecoverable business.

If errors do occur, they are generally attributed to some invalid user input. The

execution environment must be robust enough to handle the application-level error and be

able to produce a user-level error message. This must translate to a "non-error" as far as the

Web server is concerned because the application must complete successfully, even if all it

does is return an error message to present to the user as a valid Hypertext Markup Language

(HTML) Web page displaying the error.

If you are not familiar with what I am talking about, does a plain Web browser screen

with the big black words saying, "Internal Server Error" sound familiar? How about a fatal

error that brings up a pop-up that declares "Document contains no data"? As a user, do either

of these phrases mean anything to you? No, of course not (unless you are an Internet software

engineer), and to the average user, they are an endless source of confusion and frustration.

These errors are a result of a failure in the execution of an application. The application either

returns invalid Hypertext Transfer Protocol (HTTP) data or terminates fatally, resulting in the

Web server throwing its hands up into the air, saying, "I give up!"

This type of faulty execution should not be allowed, if at all possible. As systems

become more complex and involve more apprentice users, additional care should be taken to

ensure a smooth user application experience. Even in the face of an error situation, an

application should terminate successfully, as to not affect its execution environment in a

catastrophic way. Python's exception handling promotes mature and correct programming.

2.20 Why Exceptions at All?
If the above section was not motivation enough, imagine what Python

programming might be like without program level exception handling. The first

thing that comes to mind is the loss of control client programmers have over their

code. For example, if you created an interactive application that allocates and

utilizes a large number of resources, if a user hit ^C or other keyboard interrupt, the

application would not have the opportunity toper form cleanup.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 49

Mr. P Mabu Hussain

Assistant Professor

2.21 Exceptions and the sys Module
An alternative way of obtaining exception information is by accessing the exc_info()

function in the sys module. This function provides a 3-tuple of information, more than what

we can achieve by simply using only the exception argument. Let us see what we get using

sys.exc_info():

>>> try:

... float('abc123')

... except:

... import sys

... exc_tuple = sys.exc_info()

...

>>> print exc_tuple

(<class exceptions.ValueError at f9838>, <exceptions. ValueError instance at

122fa8>,

<traceback object at 10de18>)

>>>

>>> for eachItem in exc_tuple:

... print eachItem

...

exceptions.ValueError

invalid literal for float(): abc123

<traceback object at 10de18>

What we get from sys.exc_info() in a tuple are:

 exc_type: exception class object

 exc_value: (this) exception class instance object

 exc_traceback: traceback object

The first two items we are familiar with: the actual exception class and this particular

exception's instance (which is the same as the exception argument which we discussed in the

previous section). The third item, a traceback object, is new. This object provides the

execution context of where the exception occurred. It contains information such as the

execution frame of the code that was running and the line number where the exception

occurred.

In older versions of Python, these three values were available in the sys module as

sys.exc_type, sys. exc_value, and sys.exc_traceback. Unfortunately, these three are global

variables and not thread-safe. We recommend using sys.exc_info() instead. All three will be

phased out and eventually removed in a future version of Python.

2.22 Related Modules
Exception-Related Standard Library Modules

Module Description

exceptions Built-in exceptions (never need to import this module)

contextlib Context object utilities for use with the with statement

sys Contains various exception-related objects and functions (see sys.ex*)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 50

Mr. P Mabu Hussain

Assistant Professor

2.23 Modules - Modules and Files
A module allows you to logically organize your Python code. When code gets to be

large enough, the tendency is to break it up into organized pieces that can still interact with

one another at a functioning level. These pieces generally have attributes that have some

relation to one another, perhaps a single class with its member data variables and methods, or

maybe a group of related, yet independently operating functions. These pieces should be

shared, so Python allows a module the ability to "bring in" and use attributes from other

modules to take advantage of work that has been done, maximizing code reusability. This

process of associating attributes from other modules with your module is called importing. In

a nutshell, modules are self-contained and organized pieces of Python code that can be

shared.

If modules represent a logical way to organize your Python code, then files are a way

to physically organize modules. To that end, each file is considered an individual module,

and vice versa. The filename of a module is the module name appended with the .py file

extension. There are several aspects we need to discuss with regard to what the file structure

means to modules. Unlike other languages in which you import classes, in Python you import

modules or module attributes.

Module Namespaces

We will discuss namespaces in detail later in this chapter, but the basic concept of a

namespace is an individual set of mappings from names to objects. As you are no doubt

aware, module names play an important part in the naming of their attributes. The name of

the attribute is always prepended with the module name. For example, the atoi() function in

the string module is called string.atoi(). Because only one module with a given name can be

loaded into the Python interpreter, there is no intersection of names from different modules;

hence, each module defines its own unique namespace. If I created a function called atoi() in

my own module, perhaps mymodule, its name would be mymodule.atoi(). So even if there is

a name conflict for an attribute, the fully qualified namereferring to an object via dotted

attribute notationprevents an exact and conflicting match.

Search Path and Path Search

The process of importing a module requires a process called a path search. This is the

procedure of checking "predefined areas" of the file system to look for your mymodule.py

file in order to load the mymodule module. These predefined areas are no more than a set of

directories that are part of your Python search path. To avoid the confusion between the two,

think of a path search as the pursuit of a file through a set of directories, the search path.

There may be times where importing a module fails:

>>> import xxx

Traceback (innermost last):

File "<interactive input>", line 1, in ? ImportError: No module named xxx

When this error occurs, the interpreter is telling you it cannot access the requested

module, and the likely reason is that the module you desire is not in the search path, leading

to a path search failure.

A default search path is automatically defined either in the compilation or installation

process. This search path may be modified in one of two places.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 51

Mr. P Mabu Hussain

Assistant Professor

One is the PYTHONPATH environment variable set in the shell or command-line

interpreter that invokes Python. The contents of this variable consist of a colon-delimited set

of directory paths. If you want the interpreter to use the contents of this variable, make sure

you set or update it before you start the interpreter or run a Python script.

Once the interpreter has started, you can access the path itself, which is stored in the

sys module as the sys.path variable. Rather than a single string that is colon-delimited, the

path has been "split" into a list of individual directory strings. Below is an example search

path for a Unix machine. Your mileage willdefinitely vary as you go from system to system.

>>> sys.path
['', '/usr/local/lib/python2.x/', '/usr/local/lib/ python2.x/plat-sunos5',

'/usr/local/lib/python2.x/ lib-tk', '/usr/local/lib/python2.x/lib-dynload', '/

usr/local/lib/Python2.x/site-packages',]

Bearing in mind that this is just a list, we can definitely take liberty with it and modify

it at our leisure. If you know of a module you want to import, yet its directory is not in the

search path, by all means use the list's append() method to add it to the path, like so:

sys.path.append('/home/wesc/py/lib')

Once this is accomplished, you can then load your module. As long as one of the

directories in the search path contains the file, then it will be imported. Of course, this adds

the directory only to the end of your search path. If you want to add it elsewhere, such as in

the beginning or middle, then you have to use the insert() list method for those. In our

examples above, we are updating the sys.path attribute interactively, but it will work the same

way if run as a script.

Here is what it would look like if we ran into this problem interactively:

>>> import sys

>>> import mymodule Traceback (innermost last):

File "<stdin>", line 1, in ?

ImportError: No module named mymodule

>>>

>>> sys.path.append('/home/wesc/py/lib')

>>> sys.path

['', '/usr/local/lib/python2.x/', '/usr/local/lib/ python2.x/plat-sunos5',

'/usr/local/lib/python2.x/

lib-tk', '/usr/local/lib/python2.x/lib-dynload', '/usr/ local/lib/python2.x/site-

packages','/home/wesc/py/lib']

>>>

>>> import mymodule

>>>

On the flip side, you may have too many copies of a module. In the case of duplicates,

the interpreter will load the first module it finds with the given name while rummaging

through the search path in sequential order.

To find out what modules have been successfully imported (and loaded) as well as

from where, take a look at sys.modules. Unlike sys.path, which is a list of modules,

sys.modules is a dictionary where the keys are the module names with their physical location

as the values.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 52

Mr. P Mabu Hussain

Assistant Professor

2.24 Namespaces
A namespace is a mapping of names (identifiers) to objects. The process of adding a

name to a namespace consists of binding the identifier to the object (and increasing the

reference count to the object by one). The Python Language Reference also includes the

following definitions: "changing the mapping of a name is called rebinding [, and] removing

a name is unbinding."

As briefly introduced in Chapter 11, there are either two or three active namespaces at

any given time during execution. These three namespaces are the local, global, and built-ins

namespaces, but local name-spaces come and go during execution, hence the "two or three"

we just alluded to. The names

accessible from these namespaces are dependent on their loading order, or the order in which

the namespaces are brought into the system.

The Python interpreter loads the built-ins namespace first. This consists of the names

in thebuiltins module. Then the global namespace for the executing module is loaded, which

then becomes the active namespace when the module begins execution. Thus we have our

two active namespaces.

Figure:2.2: Namespaces versus variable scope

2.25 Importing Modules & Attributes
Importing a module requires the use of the import statement, whose syntax is:

import module1

import module2[

:

import moduleN

It is also possible to import multiple modules on the same line like this ...

import module1[, module2[,... moduleN]]

... but the resulting code is not as readable as having multiple import statements. Also, there

is no performance hit and no change in the way that the Python bytecode is generated, so by

all means, use the first form, which is the preferred form. When this statement is encountered

by the interpreter, the module is imported if found in the search path. Scoping rules apply, so

if imported from the top level of a module, it has global scope; if imported from a function, it

has local scope. When a module is imported the first time, it is loaded and executed.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 53

Mr. P Mabu Hussain

Assistant Professor

The from-import Statement

It is possible to import specific module elements into your own module. By this, we

really mean importing specific names from the module into the current namespace. For this

purpose, we can use the from-import statement, whose syntax is:

from module import name1[, name2[,... nameN]]

Multi-Line Import

The multi-line import feature was added in Python 2.4 specifically for long from-

import statements. When importing many attributes from the same module, import lines of

code tend to get long and wrap, requiring a NEWLINE-escaping backslash. Here is the

example imported (pun intended) directly from PEP 328:

from Tkinter import Tk, Frame, Button, Entry, Canvas, \ Text, LEFT, DISABLED,

NORMAL, RIDGE, END

Your other option is to have multiple from-import statements:

from Tkinter import Tk, Frame, Button, Entry, Canvas, Text

from Tkinter import LEFT, DISABLED, NORMAL, RIDGE, END
We are also trying to stem usage on the unfavored from Tkinter import * (see the

Core Style sidebar in Section 12.5.3). Instead, programmers should be free to use Python's

standard grouping mechanism (parentheses) to create a more reasonable multi-line import

statement:

from Tkinter import (Tk, Frame, Button, Entry, Canvas, Text, LEFT, DISABLED,

NORMAL, RIDGE, END)

You can find out more about multi-line imports in the documentation or in PEP 328.

Extended Import Statement (as)

There are times when you are importing either a module or module attribute with a

name that you are already using in your application, or perhaps it is a name that you do not

want to use. Maybe the name is too long to type everywhere, or more subjectively, perhaps it

is a name that you just plain do not like.

This had been a fairly common request from Python programmers: the ability to

import modules and module attributes into a program using names other than their original

given names. One commonworkaround is to assign the module name to a variable:

>>> import longmodulename

>>> short = longmodulename

>>> del longmodulename

In the example above, rather than using longmodulename.attribute, you would use the

short.attribute to access the same object. (A similar analogy can be made with importing

module attributes using from- import, see below.) However, to do this over and over again

and in multiple modules can be annoying and seem wasteful. Using extended import, you can

change the locally bound name for what you are importing. Statements like ...

import Tkinter

from cgi import FieldStorage

. . . can be replaced by . . .

import Tkinter as tk

from cgi import FieldStorage as form

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 54

Mr. P Mabu Hussain

Assistant Professor

This feature was added in Python 2.0. At that time, "as" was not implemented as a

keyword; it finally became one in Python 2.6. For more information on extended import, see

the Python Language Reference Manual and PEP 221.

2.26 Module Built-in Functions
The importation of modules has some functional support from the system. We will

look at those now.

import ()

The import () function is new as of Python 1.5, and it is the function that actually does

the importing, meaning that the import statement invokes the import () function to do its

work. The purpose of making this a function is to allow for overriding it if the user is inclined

to develop his or her own importation algorithm.

The syntax of import () is:

import (module_name[, globals[, locals[, fromlist]]])
The module_name variable is the name of the module to import, globals is the

dictionary of current names in the global symbol table, locals is the dictionary of current

names in the local symbol table, and fromlist is a list of symbols to import the way they

would be imported using the from-import statement.

The globals, locals, and fromlist arguments are optional, and if not provided, default

to globals(), locals(), and [], respectively.

Calling import sys can be accomplished with

sys = import ('sys')

globals() and locals()

The globals() and locals() built-in functions return dictionaries of the global and local

namespaces, respectively, of the caller. From within a function, the local namespace

represents all names defined for execution of that function, which is what locals() will return.

globals(), of course, will return those names globally accessible to that function.

From the global namespace, however, globals() and locals() return the same

dictionary because the global namespace is as local as you can get while executing there.

Here is a little snippet of code that calls both functions from both namespaces:

def foo():

print '\ncalling foo()...' aString = 'bar'

anInt = 42

print "foo()'s globals:", globals().keys()

print "foo()'s locals:", locals().keys()

print " main 's globals:", globals().keys()

print " main 's locals:", locals().keys()

foo()

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 55

Mr. P Mabu Hussain

Assistant Professor

We are going to ask for the dictionary keys only because the values are of no

consequence here (plus they make the lines wrap even more in this text). Executing this

script, we get the following output:

$ namespaces.py

main 's globals: [' doc ', 'foo', ' name ', ' builtins ']

main 's locals: [' doc ', 'foo', ' name ', ' builtins ']

calling foo()...

foo()'s globals: [' doc ', 'foo', ' name ', ' builtins ']

foo()'s locals: ['anInt', 'aString']

reload()

The reload() built-in function performs another import on a previously imported

module. The syntax of

reload() is:

reload(module)

module is the actual module you want to reload. There are some criteria for using the

reload() module. The first is that the module must have been imported in full (not by using

from-import), and it must have loaded successfully. The second rule follows from the first,

and that is the argument to reload() the module itself and not a string containing the module

name, i.e., it must be something like reload (sys) instead of reload('sys').

Also, code in a module is executed when it is imported, but only once. A second

import does not re- execute the code, it just binds the module name. Thus reload() makes

sense, as it overrides this default behavior.

2.27 Packages
A package is a hierarchical file directory structure that defines a single Python

application environment that consists of modules and subpackages. Packages were added to

Python 1.5 to aid with a variety of problems including:

 Adding hierarchical organization to flat namespace

 Allowing developers to group related modules

 Allowing distributors to ship directories vs. bunch of files

 Helping resolve conflicting module names

Along with classes and modules, packages use the familiar attribute/dotted attribute

notation to access their elements. Importing modules within packages use the standard import

and from-import statements.

Directory Structure

For our package examples, we will assume the directory structure below:

Phone/

init .py common_util.py Voicedta/

init .py Pots.py Isdn.py

Fax/

init .py G3.py

Mobile/

init .py Analog.py Digital.py

init .py Numeric.py

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 56

Mr. P Mabu Hussain

Assistant Professor

Phone is a top-level package and Voicedta, etc., are subpackages. Import subpackages by

using import like this:

import Phone.Mobile.Analog Phone.Mobile.Analog.dial()

Alternatively, you can use from-import in a variety of ways:

The first way is importing just the top-level subpackage and referencing down the

subpackage tree using the attribute/dotted notation:

from Phone import Mobile Mobile.Analog.dial('555-1212')

Furthermore, we can go down one more subpackage for referencing:

from Phone.Mobile import Analog Analog.dial('555-1212')

In fact, you can go all the way down in the subpackage tree structure:
from Phone.Mobile.Analog import dial dial('555-1212')

In our above directory structure hierarchy, we observe a number of init .py files.

These are initializer modules that are required when using from-import to import

subpackages but they can be empty if not used. Quite often, developers forget to add

inti.py files to their package directories, so starting in Python 2.5, this triggers an

ImportWarning message.

However, it is silently ignored unless the -Wd option is given when launching the

interpreter.

Using from-import with Packages

Packages also support the from-import all statement:

from package.module import *

However, such a statement is dependent on the operating system's filesystem for

Python to determine which files to import. Thus the all variable in init .py is required. This

variable contains all the module names that should be imported when the above statement is

invoked if there is such a thing. It consists of a list of module names as strings.

Absolute Import

As the use of packages becomes more pervasive, there have been more cases of the

import of subpackages that end up clashing with (and hiding or shadowing) "real" or standard

library modules (actually their names). Package modules will hide any equivalently-named

standard library module because it will look inside the package first to perform a relative

import, thus hiding access to the standard library module.

Because of this, all imports are now classified as absolute, meaning that names must

be packages or modules accessible via the Python path (sys.path or PYTHONPATH).

The rationale behind this decision is that subpackages can still be accessed via

sys.path, i.e., import Phone.Mobile.Analog. Prior to this change, it was legal to have just

import Analog from modules inside the Mobile subpackage.

As a compromise, Python allows relative importing where programmers can indicate

the location of a sub-package to be imported by using leader dots in front of the module or

package name. The absolute import feature is the default starting in Python 2.7. (This feature,

absolute_import, can be imported from future starting in version 2.5.) You can read more

about absolute import in PEP 328.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 57

Mr. P Mabu Hussain

Assistant Professor

Relative Import

As described previously, the absolute import feature takes away certain privileges of

the module writer of packages. With this loss of freedom in import statements, something

must be made available to proxy for that loss. This is where a relative import comes in. The

relative import feature alters the import syntax slightly to let programmers tell the importer

where to find a module in a subpackage. Because the import statements are always absolute,

relative imports only apply to from-import statements.

The first part of the syntax is a leader dot to indicate a relative import. From there,

any additional dot represents a single level above the current from where to start looking for

the modules being imported.

Let us look at our example above again. From within Analog.Mobile. Digital, i.e., the

Digital.py module, we cannot simply use this syntax anymore. The following will either still

work in older versions of Python, generate a warning, or will not work in more contemporary

versions of Python:

import Analog

from Analog import dial

This is due to the absolute import limitation. You have to use either the absolute or relative

imports. Below are some valid imports:

from Phone.Mobile.Analog import dial

from .Analog import dial

from ..common_util import setup
from ..Fax import G3.dial.

Relative imports can be used starting in Python 2.5. In Python 2.6, a deprecation

warning will appear for all intra-package imports not using the relative import syntax. You

can read more about relative import in the Python documentation and in PEP 328.

2.28 Other Features of Modules
Auto-Loaded Modules

When the Python interpreter starts up in standard mode, some modules are loaded by

the interpreter for system use. The only one that affects you is the builtin module, which

normally gets loaded in as the builtins module.

The sys.modules variable consists of a dictionary of modules that the interpreter has

currently loaded (in full and successfully) into the interpreter. The module names are the

keys, and the location from which they were imported are the values.

For example, in Windows, the sys.modules variable contains a large number of loaded

modules, so we will shorten the list by requesting only the module names. This is

accomplished by using the dictionary's keys() method:

>>> import sys

>>> sys.modules.keys()

['os.path', 'os', 'exceptions', ' main ', 'ntpath',

'strop', 'nt', 'sys', ' builtin ', 'site',

'signal', 'UserDict', 'string', 'stat']

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 58

Mr. P Mabu Hussain

Assistant Professor

The loaded modules for Unix are quite similar:

>>> import sys

>>> sys.modules.keys()

['os.path', 'os', 'readline', 'exceptions',

' main ', 'posix', 'sys', ' builtin ', 'site',

'signal', 'UserDict', 'posixpath', 'stat']

Preventing Attribute Import

If you do not want module attributes imported when a module is imported with "from

module import *", prepend an underscore (_) to those attribute names (you do not want

imported). This minimal level of data hiding does not apply if the entire module is imported

or if you explicitly import a "hidden" attribute, e.g., import foo._bar.

Case-Insensitive Import

There are various operating systems with case-insensitive file systems. Prior to

version 2.1, Python attempted to "do the right thing" when importing modules on the various

supported platforms, but with the growing popularity of the MacOS X and Cygwin platforms,

certain deficiencies could no longer be ignored, and support needed to be cleaned up.

The world was pretty clean-cut when it was just Unix (case-sensitive) and Win32

(case-insensitive), but these new case-insensitive systems coming online were not ported with

the case-insensitive features.

PEP 235, which specifies this feature, attempts to address this weakness as well as taking

away some "hacks" that had existed for other systems to make importing modules more

consistent.

The bottom line is that for case-insensitive imports to work properly, an environment

variable named PYTHONCASEOK must be defined. Python will then import the first

module name that is found (in a case- insensitive manner) that matches. Otherwise Python

will perform its native case-sensitive module name matching and import the first matching

one it finds.

Source Code Encoding

Starting in Python 2.3, it is now possible to create your Python module file in a native

encoding other than 7-bit ASCII. Of course ASCII is the default, but with an additional

encoding directive at the top of your Python modules, it will enable the importer to parse

your modules using the specified encoding anddesignate natively encoded Unicode strings

correctly so you do not have to worry about editing your source files in a plain ASCII text

editor and have to individually "Unicode-tag" each string literal.

An example directive specifying a UTF-8 file can be declared like this:

#!/usr/bin/env python

-*- coding: UTF-8 -*-

If you execute or import modules that contain non-ASCII Unicode string literals and

do not have an encoding directive at the top, this will result in a DeprecationWarning in

Python 2.3 and a syntax error starting in 2.5. You can read more about source code encoding

in PEP 263.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 59

Mr. P Mabu Hussain

Assistant Professor

Import Cycles

Working with Python in real-life situations, you discover that it is possible to have

import loops. If you have ever worked on any large Python project, you are likely to have run

into this situation.

Let us take a look at an example. Assume we have a very large product with a very

complex command- line interface (CLI). There are a million commands for your product, and

as a result, you have an overly massive handler (OMH) set. Every time a new feature is

added, from one to three new commands must be added to support the new feature. This will

be our omh4cli.py script:

from cli4vof import cli4vof

command line interface utility function

def cli_util():

pass

overly massive handlers for the command line interface

def omh4cli():

:

cli4vof()

:

omh4cli()

You can pretend that the (empty) utility function is a very popular piece of code that

most handlers must use. The overly massive handlers for the command-line interface are all

in the omh4cli() function. If we have to add a new command, it would be called from here.

Now, as this module grows in a boundless fashion, certain smarter engineers decide to

split off their new commands into a separate module and just provide hooks in the original

module to access the new stuff. Therefore, the code is easier to maintain, and if bugs were

found in the new stuff, one would not have to search through a one-megabyte-plus-sized

Python file.

In our case, we have an excited product manager asking us to add a "very outstanding

feature" (VOF). Instead of integrating our stuff into omh4cli.py, we create a new script,

cli4vof.py:

import omh4cli

command-line interface for a very outstanding feature

def cli4vof(): omh4cli.cli_util()

As mentioned before, the utility function is a must for every command, and because

we do not want to cut and paste its code from the main handler, we import the main module

and call it that way. To finish off our integration, we add a call to our handler into the main

overly massive handler, omh4cli().

The problem occurs when the main handler omh4cli imports our new little module

cli4vof (to get the new command function) because cli4vof imports omh4cli (to get the utility

function). Our module import fails because Python is trying to import a module that was not

previously fully imported the first time:

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 60

Mr. P Mabu Hussain

Assistant Professor

$ python omh4cli.py

Traceback (most recent call last): File "omh4cli.py", line 3, in ?

from cli4vof import cli4vof

File "/usr/prod/cli4vof.py", line 3, in ? import omh4cli

File "/usr/prod/omh4cli.py", line 3, in ? from cli4vof import cli4vof

ImportError: cannot import name cli4vof

Notice the circular import of cli4vof in the traceback. The problem is that in order to

call the utility function, cli4vof has to import omh4cli. If it did not have to do that, then

omh4cli would have completed its import of cli4vof successfully and there would be no

problem. The issue is that when omh4cli is attempting to import cli4vof, cli4vof is trying to

import omh4cli. No one finishes an import, hence the error. This is just one example of an

import cycle. There are much more complicated ones out in the real world.

The workaround for this problem is almost always to move one of the import

statements, e.g., the offending one. You will commonly see import statements at the bottom

of modules. As a beginning Python programmer, you are used to seeing them in the

beginning, but if you ever run across import statements at the end of modules, you will now

know why. In our case, we cannot move the import of omh4cli to the end, because if cli4vof()

is called, it will not have the omh4cli name loaded yet:

$ python omh4cli.py

Traceback (most recent call last): File "omh4cli.py", line 3, in ?

from cli4vof import cli4vof

File "/usr/prod/cli4vof.py", line 7, in ? import omh4cli

File "/usr/prod/omh4cli.py", line 13, in ? omh4cli()

File "/usr/prod/omh4cli.py", line 11, in omh4cli cli4vof()
File "/usr/prod/cli4vof.py", line 5, in cli4vof omh4cli.cli_util()

NameError: global name 'omh4cli' is not defined

No, our solution here is to just move the import statement into the cli4vof() function

declaration:

def cli4vof():

import omh4cli omh4cli.cli_util()

This way, the import of the cli4vof module from omh4cli completes successfully, and

on the tail end, calling the utility function is successful because the omh4cli name is imported

before it is called. As far as execution goes, the only difference is that from cli4vof, the

import of omh4cli is performed when cli4vof.cli4vof() is called and not when the cli4vof

module is imported.

Module Execution

There are many ways to execute a Python module: script invocation via the

command-line or shell, execfile(), module import, interpreter -m option, etc.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 61

Mr. P Mabu Hussain

Assistant Professor

UNIT III – REGULAR EXPRESSIONS

& MULTITHREAD PROGRAMMING

3.1 Regular Expressions- Introduction
Manipulating text/data is a big thing. If you don't believe me, look very carefully at

what computers primarily do today. Word processing, "fill-out-form" Web pages, streams of

information coming from a database dump, stock quote information, news feedsthe list goes

on and on. Because we may not know the exact text or data that we have programmed our

machines to process, it becomes advantageous to be able to express this text or data in

patterns that a machine can recognize and take action upon.

If I were running an electronic mail (e-mail) archiving company, and you were one of

my customers who requested all his or her e-mail sent and received last February, for

example, it would be nice if I could set a computer program to collate and forward that

information to you, rather than having a human being read through your e-mail and process

your request manually. You would be horrified (and infuriated) that someone would be

rummaging through your messages, even if his or her eyes were supposed to be looking only

at time-stamp. Another example request might be to look for a subject line like

"ILOVEYOU" indicating a virus-infected message and remove those e-mail messages from

your personal archive. So this begs the question of how we can program machines with the

ability to look for patterns in text.

First Regular Expression

As we mentioned above, REs are strings containing text and special characters that

describe a patternwith which to recognize multiple strings. We also briefly discussed a

regular expression alphabet and for general text, the alphabet used for regular expressions is

the set of all uppercase and lowercase letters plus numeric digits. Specialized alphabets are

also possible, for instance, one consisting of only the characters "0" and "1". The set of all

strings over this alphabet describes all binary strings, i.e., "0," "1," "00," "01," "10," "11,"

"100," etc.

Let us look at the most basic of regular expressions now to show you that although

REs are sometimes considered an "advanced topic," they can also be rather simplistic. Using

the standard alphabet for general text, we present some simple REs and the strings that their

patterns describe. The following regular expressions are the most basic, "true vanilla," as it

were. They simply consist of a string pattern that matches only one string, the string defined

by the regular expression. We now present the REs followed by the strings that match them:

RE Pattern String(s) Matched

foo foo

Python Python

abc123 abc123

The first regular expression pattern from the above chart is "foo." This pattern has no

special symbols to match any other symbol other than those described, so the only string that

matches this pattern is the string "foo." The same thing applies to "Python" and "abc123."

The power of regular expressions comes in when special characters are used to define

character sets, subgroup matching, and pattern repetition. It is these special symbols that

allow an RE to match a set of strings rather than a single one.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 62

Mr. P Mabu Hussain

Assistant Professor

3.2 Special Symbols and Characters
We will now introduce the most popular of the metacharacters, special characters and

symbols, which give regular expressions their power and flexibility.

Matching More Than One RE Pattern with Alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an alternation

operation, meaning that it is used to choose from one of the different regular expressions,

which are separated by the pipe symbol. For example, below are some patterns that employ

alternation, along with the strings they match:

RE Pattern Strings Matched

at|home at, home
r2d2|c3po r2d2, c3po

bat|bet|bit bat, bet, bit

With this one symbol, we have just increased the flexibility of our regular

expressions, enabling the matching of more than just one string. Alternation is also

sometimes called union or logical OR.

Matching Any Single Character (.)

The dot or period (.) symbol matches any single character except for NEWLINE

(Python REs have a compilation flag [S or DOTALL], which can override this to include

NEWLINEs.). Whether letter, number, whitespace not including "\n," printable, non-

printable, or a symbol, the dot can match them all.

RE Pattern Strings Matched

f.o Any character between "f" and "o", e.g., fao, f9o, f#o, etc.

.. Any pair of characters

.end Any character before the string end

Matching from the Beginning or End of Strings or Word Boundaries (^/$ /\b /\B)

There are also symbols and related special characters to specify searching for patterns

at the beginning and ending of strings. To match a pattern starting from the beginning, you

must use the carat symbol

(^) or the special character \A (backslash-capital "A"). The latter is primarily for keyboards

that do not have the carat symbol, i.e., international. Similarly, the dollar sign ($) or \Z will

match a pattern from the end of a string.

Patterns that use these symbols differ from most of the others we describe in this

chapter since they dictate location or position. In the Core Note above, we noted that a

distinction is made between "matching," attempting matches of entire strings starting at the

beginning, and "searching," attempting matches from anywhere within a string. With that

said, here are some examples of "edge-bound" RE search patterns:

RE Pattern Strings Matched

^From Any string that starts with From

/bin/tcsh$ Any string that ends with /bin/tcsh

^Subject: hi$ Any string consisting solely of the string Subject: hi

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 63

Mr. P Mabu Hussain

Assistant Professor

Again, if you want to match either (or both) of these characters verbatim, you must use an

escaping backslash. For example, if you wanted to match any string that ended with a dollar

sign, one possible RE solution would be the pattern ".*\$$".

The \b and \B special characters pertain to word boundary matches. The difference

between them is that\b will match a pattern to a word boundary, meaning that a pattern must

be at the beginning of a word, whether there are any characters in front of it (word in the

middle of a string) or not (word at the beginning of a line). And likewise, \B will match a

pattern only if it appears starting in the middle of a word (i.e., not at a word boundary). Here

are some examples:

RE Pattern Strings Matched

the Any string containing the

\bthe Any word that starts with the

\bthe\b Matches only the word the

\Bthe Any string that contains but does not begin with the

3.3 REs and Python
Now that we know all about regular expressions, we can examine how Python

currently supports regular expressions through the re module. The re module was introduced

to Python in version 1.5. If you are using an older version of Python, you will have to use the

now-obsolete regex and regsub modulesthese older modules are more Emacs-flavored, are

not as full-featured, and are in many ways incompatible with the current re module. Both

modules were removed from Python in 2.5, and import either of the modules from 2.5 and

above triggers Import Error exception.

However, regular expressions are still regular expressions, so most of the basic

concepts from this section can be used with the old regex and regsub software. In contrast,

the new re module supports the more powerful and regular Perl-style (Perl5) REs, allows

multiple threads to share the same compiled RE objects, and supports named subgroups. In

addition, there is a transition module called reconvert to help developers move from

regex/regsub to re. However, be aware that although there are different flavors of regular

expressions, we will primarily focus on the current incarnation for Python.

The re engine was rewritten in 1.6 for performance enhancements as well as adding Unicode

support. The interface was not changed, hence the reason the module name was left alone.

The new re engineknown internally as sre thus replaces the existing 1.5 engineinternally

called pcre.

re Module: Core Functions and Methods

The chart in Table 15.2 lists the more popular functions and methods from the re

module. Many of these functions are also available as methods of compiled regular

expression objects "regex objects" and RE "match objects." In this subsection, we will look at

the two main functions/methods, match() and search (), as well as the compile() function. We

will introduce several more in the next section, but for more information on all these and the

others that we do not cover, we refer you to the Python documentation.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 64

Mr. P Mabu Hussain

Assistant Professor

3.4 Multithreaded Programming – Introduction
Before the advent of multithreaded (MT) programming, running of computer

programs consisted of a single sequence of steps that were executed in synchronous order by

the host's central processing unit (CPU). This style of execution was the norm whether the

task itself required the sequential ordering of steps or if the entire program was actually an

aggregation of multiple subtasks. What if these subtasks were independent, having no causal

relationship (meaning that results of subtasks do not affect other subtask outcomes)? Is it not

logical, then, to want to run these independent tasks all at the same time? Such parallel

processing could significantly improve the performance of the overall task. This is what MT

programming is all about.

MT programming is ideal for programming tasks that are asynchronous in nature,

require multiple concurrent activities, and where the processing of each activity may be

nondeterministic, i.e., random and unpredictable. Such programming tasks can be organized

or partitioned into multiple streams of execution where each has a specific task to

accomplish. Depending on the application, these subtasks may calculate intermediate results

that could be merged into a final piece of output.

While CPU-bound tasks may be fairly straightforward to divide into subtasks and

executed sequentially or in a multithreaded manner, the task of managing a single-threaded

process with multiple external sources of input is not as trivial. To achieve such a

programming task without multithreading, a sequential program must use one or more timers

and implement a multiplexing scheme.

A sequential program will need to sample each I/O (input/output) terminal channel to

check for user input; however, it is important that the program does not block when reading

the I/O terminal channel because the arrival of user input is nondeterministic, and blocking

would prevent processing of other I/O channels. The sequential program must use non-

blocked I/O or blocked I/O with a timer (so that blocking is only temporary).

Because the sequential program is a single thread of execution, it must juggle the

multiple tasks that it needs to perform, making sure that it does not spend too much time on

any one task, and it must ensure that user response time is appropriately distributed. The use

of a sequential program for this type of task often results in a complicated flow of control that

is difficult to understand and maintain.

Using an MT program with a shared data structure such as a Queue (a multithreaded

queue data structure discussed later in this chapter), this programming task can be organized

with a few threads that have specific functions to perform:

 UserRequestThread: Responsible for reading client input, perhaps from an I/O

channel. A number of threads would be created by the program, one for each current

client, with requests being entered into the queue.

 RequestProcessor: A thread that is responsible for retrieving requests from the queue

and processing them, providing output for yet a third thread.

 ReplyThread: Responsible for taking output destined for the user and either sending it

back, if in

 a networked application, or writing data to the local file system or database.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 65

Mr. P Mabu Hussain

Assistant Professor

Organizing this programming task with multiple threads reduces the complexity of the

program and enables an implementation that is clean, efficient, and well organized. The logic

in each thread is typically less complex because it has a specific job to do. For example, the

UserRequestThread simply reads input from a user and places the data into a queue for

further processing by another thread, etc. Each thread has its own job to do; you merely have

to design each type of thread to do one thing and do it well. Use of threads for specific tasks

is not unlike Henry Ford's assembly line model for manufacturing automobiles.

3.5 Threads and Processes

Processes
Computer programs are merely executable, binary (or otherwise), which reside on

disk. They do not take on a life of their own until loaded into memory and invoked by the

operating system. A process (sometimes called a heavyweight process) is a program in

execution. Each process has its own address space, memory, a data stack, and other auxiliary

data to keep track of execution. The operating system manages the execution of all processes

on the system, dividing the time fairly between all processes.

Processes can also fork or spawn new processes to perform other tasks, but each new

process has its own memory, data stack, etc., and cannot generally share information unless

interprocess communication (IPC) is employed.

Threads:
Threads (sometimes called lightweight processes) are similar to processes except that

they all execute within the same process, and thus all share the same context. They can be

thought of as "mini- processes" running in parallel within a main process or "main thread."

A thread has a beginning, an execution sequence, and a conclusion. It has an

instruction pointer that keeps track of where within its context it is currently running. It can

be preempted (interrupted) and temporarily put on hold (also known as sleeping) while other

threads are running this is called yielding.

Multiple threads within a process share the same data space with the main thread and

can therefore share information or communicate with one another more easily than if they

were separate processes. Threads are generally executed in a concurrent fashion, and it is this

parallelism and data sharing that enable the coordination of multiple tasks. Naturally, it is

impossible to run truly in a concurrent manner in a single CPU system, so threads are

scheduled in such a way that they run for a little bit, then yield to other threads (going to the

proverbial "back of the line" to await more CPU time again). Throughout the execution of the

entire process, each thread performs its own, separate tasks, and communicates the results

with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more threads access the

same piece of data, inconsistent results may arise because of the ordering of data access. This

is commonly known as a race condition. Fortunately, most thread libraries come with some

sort of synchronization primitives that allow the thread manager to control execution and

access.

Another caveat is that threads may not be given equal and fair execution time. This is

because some functions block until they have completed. If not written specifically to take

threads into account, this skews the amount of CPU time in favor of such greedy functions.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 66

Mr. P Mabu Hussain

Assistant Professor

3.6 Python, Threads, and the Global Interpreter Lock

Global Interpreter Lock (GIL)
Execution of Python code is controlled by the Python Virtual Machine (aka the

interpreter main loop). Python was designed in such a way that only one thread of control

may be executing in this main loop, similar to how multiple processes in a system share a

single CPU. Many programs may be in memory, but only one is live on the CPU at any given

moment. Likewise, although multiple threads may be "running" within the Python interpreter,

only one thread is being executed by the interpreter at any given time.

Access to the Python Virtual Machine is controlled by the global interpreter lock

(GIL). This lock is what ensures that exactly one thread is running. The Python Virtual

Machine executes in the following manner in an MT environment:

1. Set the GIL

2. Switch in a thread to run

3. Execute either ...

a. For a specified number of bytecode instructions, or

b. If the thread voluntarily yields control (can be accomplished

time.sleep(0))

4. Put the thread back to sleep (switch out thread)

5. Unlock the GIL, and ...

6. Do it all over again (lather, rinse, repeat)

When a call is made to external code, i.e., any C/C++ extension built-in function, the

GIL will be locked until it has completed (since there are no Python bytecodes to count as the

interval). Extension programmers do have the ability to unlock the GIL, however, so you

being the Python developer shouldn't have to worry about your Python code locking up in

those situations.

As an example, for any Python I/O-oriented routines (which invoke built-in operating

system C code), the GIL is released before the I/O call is made, allowing other threads to run

while the I/O is being performed. Code that doesn't have much I/O will tend to keep the

processor (and GIL) for the full interval a thread is allowed before it yields. In other words,

I/O-bound Python programs stand a much better chance of being able to take advantage of a

multithreaded environment than CPU-bound code.

3.7 Thread Module
Let's take a look at what the tHRead module has to offer. In addition to being able to

spawn threads, the tHRead module also provides a basic synchronization data structure called

a lock object (aka primitive lock, simple lock, mutual exclusion lock, mutex, binary

semaphore). As we mentioned earlier, such synchronization primitives go hand in hand with

thread management.

Using the thread Module (mtsleep1.py)

The same loops from onethr.py are executed, but this time using the simple

multithreaded mechanism provided by the thread module. The two loops are executed

concurrently (with the shorter one finishing first, obviously), and the total elapsed time is

only as long as the slowest thread rather than the total time for each separately.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 67

Mr. P Mabu Hussain

Assistant Professor

import thread

from time import sleep, ctime

def loop0():

print 'start loop 0 at:', ctime() sleep(4)

print 'loop 0 done at:', ctime()

def loop1():

print 'start loop 1 at:', ctime() sleep(2)

print 'loop 1 done at:', ctime()

def main():

print 'starting at:', ctime() thread.start_new_thread(loop0, ())
thread.start_new_thread(loop1, ()) sleep(6)

print 'all DONE at:', ctime()

if name == ' main ': main()

start_new_thread() requires the first two arguments, so that is the reason for passing in

an empty tuple even if the executing function requires no arguments.

Upon execution of this program, our output changes drastically. Rather than taking a

full 6 or 7 seconds, our script now runs in 4, the length of time of our longest loop, plus any

overhead.

$ mtsleep1.py

starting at: Sun Aug 13 05:04:50 2006

start loop 0 at: Sun Aug 13 05:04:50 2006

start loop 1 at: Sun Aug 13 05:04:50 2006

loop 1 done at: Sun Aug 13 05:04:52 2006

loop 0 done at: Sun Aug 13 05:04:54 2006

all DONE at: Sun Aug 13 05:04:56 2006

The pieces of code that sleep for 4 and 2 seconds now occur concurrently,

contributing to the lower overall runtime. You can even see how loop 1 finishes before loop

0.

The only other major change to our application is the addition of the "sleep(6)" call.

Why is this necessary? The reason is that if we did not stop the main thread from continuing,

it would proceed to the next statement, displaying "all done" and exit, killing both threads

running loop0() and loop1().

We did not have any code that told the main thread to wait for the child threads to

complete before continuing. This is what we mean by threads requiring some sort of

synchronization. In our case, we used another sleep() call as our synchronization mechanism.

We used a value of 6 seconds because we know that both threads (which take 4 and 2

seconds, as you know) should have completed by the time the main thread has counted to 6.

You are probably thinking that there should be a better way of managing threads than

creating that extra delay of 6 seconds in the main thread. Because of this delay, the overall

runtime is no better than in our single-threaded version.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 68

Mr. P Mabu Hussain

Assistant Professor

Using sleep() for thread synchronization as we did is not reliable. What if our loops had

independent and varying execution times? We may be exiting the main thread too early or too

late. This is where locks come in.

Making yet another update to our code to include locks as well as getting rid of

separate loop functions, we get mtsleep2.py, presented in Example 18.3. Running it, we see

that the output is similar to mtsleep1. py. The only difference is that we did not have to wait

the extra time for mtsleep1.py to conclude. By using locks, we were able to exit as soon as

both threads had completed execution.

$ mtsleep2.py

starting at: Sun Aug 13 16:34:41 2006

start loop 0 at: Sun Aug 13 16:34:41 2006

start loop 1 at: Sun Aug 13 16:34:41 2006

loop 1 done at: Sun Aug 13 16:34:43 2006

loop 0 done at: Sun Aug 13 16:34:45 2006

all DONE at: Sun Aug 13 16:34:45 2006

3.8 Threading Module
We will now introduce the higher-level tHReading module, which gives you not only

a THRead class but also a wide variety of synchronization mechanisms to use to your heart's

content.

Using the tHReading Module (mtsleep3.py)

The Thread class from the threading module has a join() method that lets the main
thread wait for thread completion.

1 #!/usr/bin/env python

2

3 import threading

4 from time import sleep, ctime

5

6 loops = [4,2]

7

8 def loop(nloop, nsec):

9 print 'start loop', nloop, 'at:', ctime()

10 sleep(nsec)

11 print 'loop', nloop, 'done at:', ctime()

12

13 def main():

14 print 'starting at:', ctime()

15 threads = []

16 nloops = range(len(loops))

17

18 for i in nloops:

19 t = threading.Thread(target=loop,

20 args=(i, loops[i]))

21 threads.append(t)

22

23 for i in nloops:# start threads

24 threads[i].start()

25

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 69

Mr. P Mabu Hussain

Assistant Professor

26 for i in nloops:# wait for all

27 threads[i].join() # threads to finish

28

29 print ‘all DONE at:’, ctime()

30

31 if_name == ‘_main_’:
32 main()

When we run it, we see output similar to its predecessors' output:

$ mtsleep3.py

starting at: Sun Aug 13 18:16:38 2006

start loop 0 at: Sun Aug 13 18:16:38 2006

start loop 1 at: Sun Aug 13 18:16:38 2006

loop 1 done at: Sun Aug 13 18:16:40 2006

loop 0 done at: Sun Aug 13 18:16:42 2006

all DONE at: Sun Aug 13 18:16:42 2006

So what did change? Gone are the locks that we had to implement when using the

tHRead module. Instead, we create a set of Thread objects. When each Thread is instantiated,

we dutifully pass in the function (target) and arguments (args) and receive a THRead instance

in return. The biggest difference between instantiating Thread [calling Thread()] and

invoking thread.start_new_thread() is that the new thread does not begin execution right

away. This is a useful synchronization feature, especially when you don't want the threads to

start immediately.

Once all the threads have been allocated, we let them go off to the races by invoking

each thread's start () method, but not a moment before that. And rather than having to manage

a set of locks (allocating, acquiring, releasing, checking lock state, etc.), we simply call the

join() method for each thread. join() will wait until a thread terminates, or, if provided, a

timeout occurs. Use of join() appears much cleaner than an infinite loop waiting for locks to

be released (causing these locks to sometimes be known as "spin locks").

One other important aspect of join() is that it does not need to be called at all. Once

threads are started, they will execute until their given function completes, whereby they will

exit. If your main thread has things to do other than wait for threads to complete (such as

other processing or waiting for new client requests), it should by all means do so. join() is

useful only when you want to wait for thread completion.

3.9 Related Modules
The table below lists some of the modules you may use when programming

multithreaded applications.

Threading-Related Standard Library Modules

Module Description
tHRead Basic, lower-level thread module

threading Higher-level threading and synchronization objects Queue

Synchronized FIFO queue for multiple threads mutex Mutual exclusion objects

SocketServer TCP and UDP managers with some threading control

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 70

Mr. P Mabu Hussain

Assistant Professor

UNIT IV – GUI & WEB PROGRAMMING

4.1 GUI Programming – Introduction
Tkinter is Python's default GUI library. It is based on the Tk toolkit, originally

designed for the Tool Command Language (Tcl). Due to Tk's popularity, it has been ported to

a variety of other scripting languages, including Perl (Perl/Tk), Ruby (Ruby/Tk), and Python

(Tkinter). With the GUI development portability and flexibility of Tk, along with the

simplicity of scripting language integrated with the power of systems language, you are given

the tools to rapidly design and implement a wide variety of commercial-quality GUI

applications.

If you are new to GUI programming, you will be pleasantly surprised at how easy it

is. You will also find that Python, along with Tkinter, provides a fast and exciting way to

build applications that are fun (and perhaps useful) and that would have taken much longer if

you had had to program directly in C/C++ with the native windowing system's libraries. Once

you have designed the application and the look and feel that goes along with your program,

you will use basic building blocks known as widgets to piece together the desired

components, and finally, to attach functionality to "make it real."

If you are an old hand at using Tk, either with Tcl or Perl, you will find Python a

refreshing way to program GUIs. On top of that, it provides an even faster rapid prototyping

system for building them. Remember that you also have Python's system accessibility,

networking functionality, XML, numerical and visual processing, database access, and all the

other standard library and third-party extension modules.

Once you get Tkinter up on your system, it will take less than 15 minutes to get your

first GUI application running.

Getting Tkinter Installed and Working

Like threading, Tkinter is not necessarily turned on by default on your system. You can tell

whether Tkinter is available for your Python interpreter by attempting to import the Tkinter

module. If Tkinter is available, then no errors occur:

>>> import Tkinter

>>>

If your Python interpreter was not compiled with Tkinter enabled, the module import

fails:

>>> import Tkinter Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/usr/lib/python1.5/lib-tk/Tkinter.py", line 8, in ?

import _tkinter # If this fails your Python may not be configured for Tk

ImportError: No module named _tkinter

You may have to recompile your Python interpreter to get access to Tkinter. This

usually involves editing the Modules/Setup file and enabling all the correct settings to

compile your Python interpreter with hooks to Tkinter or choosing to have Tk installed on

your system. Check the README file for your Pythondistribution for specific instructions on

getting Tkinter to compile on your system. Be sure, after your compilation, that you start the

new Python interpreter you just created; otherwise, it will act just like your old one without

Tkinter (and in fact, it is your old one).

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 71

Mr. P Mabu Hussain

Assistant Professor

Client/Server ArchitectureTake Two

In the earlier chapter on network programming, we introduced the notion of

client/server computing. A windowing system is another example of a software server. These

run on a machine with an attached display, such as a monitor of some sort. There are clients,

tooprograms that require a windowing environment to execute, also known as GUI

applications. Such applications cannot run without a windows system.

The architecture becomes even more interesting when networking comes into play.

Usually when a GUI application is executed, it displays to the machine that it started on (via

the windowing server), but it is possible in some networked windowing environments, such

as the X Window system on Unix, to choose another machine's window server to display to.

In such situations, you can be running a GUI program on one machine, but have it displayed

on another!

4.2 Tkinter and Python Programming
Tkinter Module: Adding Tk to your Applications

So what do you need to do to have Tkinter as part of your application? Well, first of

all, it is not necessary to have an application already. You can create a pure GUI if you want,

but it probably isn't too useful without some underlying software that does something

interesting.

There are basically five main steps that are required to get your GUI up and running:

1. Import the Tkinter module (or from Tkinter import *).

2. Create a top-level windowing object that contains your entire GUI application.

3. Build all your GUI components (and functionality) on top (or "inside") of your

top-level windowing object.

4. Connect these GUI components to the underlying application code.

5. Enter the main event loop.

Introduction to GUI Programming

Before going to the examples, we will give you a brief introduction to GUI

application development in general. This will provide you with some of the background you

need to move forward.

Setting up a GUI application is similar to an artist's producing a painting.

Conventionally, there is a single canvas onto which the artist must put all the work. The way

it works is like this: You start with a clean slate, a "top-level" windowing object on which

you build the rest of your components. Think of it as a foundation to a house or the easel for

an artist. In other words, you have to pour the concrete or set up your easel before putting

together the actual structure or canvas on top of it. In Tkinter, this foundation is known as the

top-level window object.

In GUI programming, a top-level root windowing object contains all of the little

windowing objects that will be part of your complete GUI application. These can be text

labels, buttons, list boxes, etc. These individual little GUI components are known as widgets.

So when we say create a top-level window, we just mean that you need such a thing as a

place where you put all your widgets. In Python, this would typically look like this line:

top = Tkinter.Tk() # or just Tk() with "from Tkinter import *"

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 72

Mr. P Mabu Hussain

Assistant Professor

The object returned by Tkinter.Tk() is usually referred to as the root window, hence

the reason whysome applications use root rather than top to indicate as such. Top-level

windows are those that show up standalone as part of your application. You may have more

than one top-level window for your GUI, but only one of them should be your root window.

You may choose to completely design all your widgets first, then add the real functionality,

or do a little of this and a little of that along the way. (This means mixing and matching steps

3 and 4 from our list.)

Widgets may be standalone or be containers. If a widget "contains" other widgets, it is

considered the parent of those widgets. Accordingly, if a widget is "contained" in another

widget, it's considered a child of the parent, the parent being the next immediate enclosing

container widget.

Usually, widgets have some associated behaviors, such as when a button is pressed, or

text is filled into a text field. These types of user behaviors are called events, and the actions

that the GUI takes to respond to such events are known as callbacks.

Actions may include the actual button press (and release), mouse movement, hitting

the RETURN or Enter key, etc. All of these are known to the system literally as events. The

entire system of events that occurs from the beginning to the end of a GUI application is what

drives it. This is known as event- driven processing.

One example of an event with a callback is a simple mouse move. Let's say the mouse

pointer is sitting somewhere on top of your GUI application. If the mouse is moved to

another part of your application, something has to cause the movement of the mouse on your

screen so that it looks as if it is moving to another location. These are mouse move events

that the system must process to give you the illusion (and reality) that your mouse is moving

across the window. When you release the mouse, there are no more events to process, so

everything just sits there quietly on the screen again.

The event-driven processing nature of GUIs fits right in with client/server

architecture. When you start a GUI application, it must perform some setup procedures to

prepare for the core execution, just as when a network server has to allocate a socket and bind

it to a local address. The GUI application must establish all the GUI components, then draw

(aka render or paint) them to the screen. Tk has a couple of geometry managers that help

position the widget in the right place; the main one that you will use is called Pack, aka the

packer. Another geometry manager is Gridthis is where you specify GUI widgets to be placed

in grid coordinates, and Grid will render each object in the GUI in their grid position. For us,

we will stick with the packer.

Once the packer has determined the sizes and alignments of all your widgets, it will

then place them on the screen for you. When all of the widgets, including the top-level

window, finally appear on your screen, your GUI application then enters a "server-like"

infinite loop. This infinite loop involves waiting for a GUI event, processing it, then going

back to wait for the next event.

The final step we described above says to enter the main loop once all the widgets are

ready. This is the "server" infinite loop we have been referring to. In Tkinter, the code that

does this is:

Tkinter.mainloop()

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 73

Mr. P Mabu Hussain

Assistant Professor

This is normally the last piece of sequential code your program runs. When the main loop is

entered, the GUI takes over execution from there. All other action is via callbacks, even

exiting your application.

When you pull down the File menu to click on the Exit menu option or close the window

directly, a callback must be invoked to end your GUI application.

Top-Level Window: Tkinter.Tk()

We mentioned above that all main widgets are built into the top-level window object.

This object iscreated by the Tk class in Tkinter and is created via the normal instantiation:

>>> import Tkinter

>>> top = Tkinter.Tk()

4.3 Brief Tour of other GUIs
We hope to eventually develop an independent chapter on general GUI development

using many of the abundant number of graphical toolkits that exist under Python, but alas,

that is for the future. As a proxy, we would like to present a single simple GUI application

written using four of the more popular and available toolkits out there: Tix (Tk Interface

eXtensions), Pmw (Python MegaWidgets Tkinter extension), wxPython (Python binding to

wxWidgets), and PyGTK (Python binding to GTK+). Links to where you can get more

information and/or download these toolkits can be found in the reference section at the end of

this chapter.

The Tix module is already available in the Python standard library. You must

download the others, which are third party. Since Pmw is just an extension to Tkinter, it is the

easiest to install (just extract into your site packages). wxPython and PyGTK involve the

download of more than one file and building (unless you opt for the Win32 versions where

binaries are usually available). Once the toolkits are installed and verified, we can begin.

Rather than just sticking with the widgets we've already seen in this chapter, we'd like to

introduce a few more complex widgets for these examples.

In addition to the Label and Button widgets we have seen before, we would like to

introduce the Control or SpinButton and ComboBox. The Control widget is a combination of

a text widget with a value inside being "controlled" or "spun up or down" by a set of arrow

buttons close by, and the ComboBox is usually a text widget and a pulldown menu of options

where the currently active or selected item in the list is displayed in the text widget.

Our application is fairly basic: pairs of animals are being moved around, and the

number of total animals can range from a pair to a dozen max. The Control is used to keep

track of the total number while the ComboBox is a menu containing the various types of

animals that can be selected. In Figure, each image shows the state of the GUI application

immediately after launching. Note that the default number of animals is two, and no animal

type has been selected yet.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 74

Mr. P Mabu Hussain

Assistant Professor

Fig: 4.1 Application using various GUIs under Win32

Fig: 4.2 After modifying the Tix GUI version of our application (animalTix. pyw)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 75

Mr. P Mabu Hussain

Assistant Professor

Tix GUI Demo (animalTix.pyw)

4.4 Related Modules and other GUIs
There are other GUI development systems that can be used with Python.

 Tk-Related Modules

 wxWidgets-Related Modules

 GTK+/GNOME-Related Modules

 Qt/KDE-Related Modules

 Other Open Source GUI Toolkits

 Commercial

4.5 Web Programming – Introduction
Web programming will give you a quick and high-level overview of the kinds of things you

can do with Python on the Internet, from Web surfing to creating user feedback forms, from

recognizing Uniform Resource Locators to generating dynamic Web page output.

4.6 Web Surfing with Python: Creating Simple Web Clients
Web surfing falls under the same client/server architecture umbrella that we have seen

repeatedly. This time, Web clients are browsers, applications that allow users to seek

documents on the World Wide Web. On the other side are Web servers, processes that run on

an information provider's host computers.

Our first example uses the Tix module. Tix comes with Python!

1

2

3

4

5

6

7

8

9
11

#!/usr/bin/envpyth

from Tkinter import Label, Button, END

from Tix import Tk, Control, ComboBox

top = Tk()

top.tk.eval('package require Tix')

lb = Label(top,

lb.pack

() 12

13 ct = Control(top,label='Number:',
14 integer=True, max=12, min=2,

value=2,step=2)

15 ct.label.config(font='Helvetica -14bold')

16 ct

.pack

() 17

18 cb=ComboBox(top,label='Type:',editable=Tru
e)

19 foranimalin('dog','cat','hamster','python'

):

20 cb.insert(END,animal)

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 76

Mr. P Mabu Hussain

Assistant Professor

These servers wait for clients and their document requests, process them, and return

the requested data. As with most servers in a client/server system, Web servers are designed

to run "forever." The Web surfing experience is best illustrated by Figure. Here, a user runs a

Web client program such as a browser and makes a connection to a Web server elsewhere

on the Internet to obtain information.

A client sends a request out over the Internet to the server, which then responds with the

requested data back to the client.

Fig 4.3: Web client and Web server on the Internet.

Clients may issue a variety of requests to Web servers. Such requests may include obtaining a

Web page for viewing or submitting a form with data for processing. The request is then

serviced by the Web server, and the reply comes back to the client in a special format for

display purposes.

The "language" that is spoken by Web clients and servers, the standard protocol used

for Web communication, is called HTTP, which stands for HyperText Transfer Protocol.

HTTP is written "on top of" the TCP and IP protocol suite, meaning that it relies on TCP and

IP to carry out its lower-level communication functionality. Its responsibility is not to route

or deliver messagesTCP and IP handle thatbut to respond to client requests (by sending and

receiving HTTP messages).

HTTP is known as a "stateless" protocol because it does not keep track of information

from one client request to the next, similar to the client/server architecture we have seen so

far. The server stays running, but client interactions are singular events structured in such a

way that once a client request is serviced, it quits. New requests can always be sent, but they

are considered separate service requests. Because of the lack of context per request, you may

notice that some URLs have a long set of variablesand values chained as part of the request to

provide some sort of state information. Another alternative is the use of "cookies"static data

stored on the client side which generally contain state information as well. In later parts of

this chapter, we will look at how to use both long URLs and cookies to maintain state

information.

4.7 Advanced Web Clients
Web browsers are basic Web clients. They are used primarily for searching and

downloading documents from the Web. Advanced clients of the Web are those applications

that do more than download single documents from the Internet.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 77

Mr. P Mabu Hussain

Assistant Professor

One example of an advanced Web client is a crawler (aka spider, robot). These are

programs that explore and download pages from the Internet for different reasons, some of

which include:

 Indexing into a large search engine such as Google or Yahoo!

 Offline browsingdownloading documents onto a local hard disk and rearranging

hyperlinks to create almost a mirror image for local browsing

 Downloading and storing for historical or archival purposes, or

 Web page caching to save superfluous downloading time on Web site revisits.

The crawler we present below, crawl.py, takes a starting Web address (URL), downloads

that page and all other pages whose links appear in succeeding pages, but only those that are

in the same domain as the starting page. Without such limitations, you will run out of disk

space!

4.8 CGI: Helping Servers Process Client Data
The Web was initially developed to be a global online repository or archive of (mostly

educational and research-oriented) documents. Such pieces of information generally come in

the form of static text and usually in HTML.

HTML is not as much a language as it is a text formatter, indicating changes in font

types, sizes, and styles. The main feature of HTML is in its hypertext capability, text that is in

one way or another highlighted to point to another document in a related context to the

original. Such a document can be accessed by a mouse click or other user selection

mechanism. These (static) HTML documents live on the Web server and are sent to clients

when and if requested.

As the Internet and Web services evolved, there grew a need to process user input.

Online retailers needed to be able to take individual orders, and online banks and search

engine portals needed to create accounts for individual users. Thus fill-out forms were

invented, and became the only way a Web site can get specific information from users (until

Java applets came along). This, in turn, required the HTML now be generated on the fly, for

each client submitting user-specific data.

Now, Web servers are only really good at one thing, getting a user request for a file

and returning that file (i.e., an HTML file) to the client. They do not have the "brains" to be

able to deal with user-specific data such as those which come from fields. Not being their

responsibility, Web servers farm out such requests to external applications which create the

dynamically generated HTML that is returned to the client.

The entire process begins when the Web server receives a client request (i.e., GET or

POST) and calls the appropriate application. It then waits for the resulting HTMLmeanwhile,

the client also waits. Once the application has completed, it passes the dynamically generated

HTML back to the server, who then (finally) forwards it back to the user. This process of the

server receiving a form, contacting an external application, and receiving and returning the

newly-generated HTML takes place through what is called the Web server's CGI (Common

Gateway Interface). An overview of how CGI works is illustrated in Figure 20-3, which

shows you the execution and data flow, step-by-step, from when a user submits aform until

the resulting Web page is returned.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 78

Mr. P Mabu Hussain

Assistant Professor

CGI represents the interaction between a Web server and the application that is required to

process a user's form and generate the dynamic HTML that is eventually returned.

Figure: 4.4 : Overview of how CGI works.

Forms input from the client sent to a Web server may include processing and perhaps

some form of storage in a backend database. Just keep in mind that any time there are any

user-filled fields and/or a Submit button or image, it most likely involves some sort of CGI

activity.

CGI applications that create the HTML are usually written in one of many higher-

level programming languages that have the ability to accept user data, process it, and return

HTML back to the server. Currently used programming languages include Perl, PHP, C/C++,

or Python, to name a few. Before we take a look at CGI, we have to provide the caveat that

the typical production Web application is no longer being done in CGI anymore.

Because of its significant limitations and limited ability to allow Web servers to

process an abundant number of simultaneous clients, CGI is a dinosaur. Mission-critical Web

services rely on compiled languages like C/C++ to scale. A modern-day Web server is

typically composed of Apache and integrated components for database access (MySQL or

PostgreSQL), Java (Tomcat), PHP, and various modules for Perl, Python, and SSL/security.

However, if you are working on small personal Web sites or ones for small organizations and

do not need the power and complexity required by mission critical Web services, CGI is the

perfect tool for your simple Web sites.

Furthermore, there are a good number of Web application development frameworks

out there as well as content management systems, all of which make building CGI a relic of

past. However, beneath all the fluff and abstraction, they must still, in the end, follow the

same model that CGI originally provided, and that is being able to take user input, execute

code based on that input, and provide valid HTML as its final output for the client. Therefore,

the exercise in learning CGI is well worth it in terms of understanding the fundamentals in

order to develop effective Web services.

4.9 Building CGI Application
In order to play around with CGI development in Python, you need to first install a

Web server, configure it for handling Python CGI requests, and then give the Web server

access to your CGI scripts. Some of these tasks may require assistance from your system

administrator.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 79

Mr. P Mabu Hussain

Assistant Professor

If you want a real Web server, you will likely download and install Apache. There are

Apache plug-ins or modules for handling Python CGI, but they are not required for our

examples. You may wish to install those if you are planning on "going live" to the world with

your service. Even this may be overkill.

For learning purposes or for simple Web sites, it may suffice to just use the Web

servers that come with Python. In Section 20.8, you will actually learn how to build and

configure simple Python-based Webservers. You may read ahead now if you wish to find out

more about it at this stage. However, that is not what this section is about.

If you want to just start up the most basic Web server, just execute it directly with

Python:

$ python -m CGIHTTPServer

The -m option is new in 2.4, so if you are using an older version of Python or want to

see alternative ways of running it, see section 14.4.3. Anyway, if you eventually get it

working.

This will start a Web server on port 8000 on your current machine from the current

directory. Then you can just create a Cgi-bin right underneath the directory from which you

started the server and put your Python CGI scripts in there. Put some HTML files in that

directory and perhaps some .py CGI scripts in Cgi-bin, and you are ready to "surf" directly to

this Web site with addresses looking something like these:

http://localhost:8000/friends.htm

http://localhost:8000/cgi-bin/friends2.py

4.10 Advanced CGI
We will now take a look at some of the more advanced aspects of CGI programming.

These include the use of cookiescached data saved on the client sidemultiple values for the

same CGI field and file upload using multipart form submissions. To save space, we will

show you all three of these features with a single application. Let's take a look at multipart

submissions first.

Multipart Form Submission and File Uploading

Currently, the CGI specifications only allow two types of form encodings,

"application/x-www-form- urlencoded" and "multipart/form-data." Because the former is the

default, there is never a need to state the encoding in the FORM tag like this:

<FORM enctype="application/x-www-form-urlencoded" ...>

But for multipart forms, you must explicitly give the encoding as:

<FORM enctype="multipart/form-data" ...>

You can use either type of encoding for form submissions, but at this time, file

uploads can only be performed with the multipart encoding. Multipart encoding was invented

by Netscape in the early days but has since been adopted by Microsoft (starting with version

4 of Internet Explorer) as well as other browsers.

File uploads are accomplished using the file input type:

<INPUT type=file name=...>

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 80

Mr. P Mabu Hussain

Assistant Professor

This directive presents an empty text field with a button on the side which allows you

to browse your file directory structure for a file to upload. When using multipart, your Web

client's form submission to the server will look amazingly like (multipart) e-mail messages

with attachments. A separate encoding was needed because it just would not be necessarily

wise to "urlencode" a file, especially a binary file. The information still gets to the server, but

it is just "packaged" in a different way.

Regardless of whether you use the default encoding or the multipart, the cgi module

will process them in the same manner, providing keys and corresponding values in the form

submission. You will simply access the data through your FieldStorage instance as before.

Multivalued Fields

In addition to file uploads, we are going to show you how to process fields with

multiple values. The most common case is when you have a set of checkboxes allowing a

user to select from various choices. Each of the checkboxes is labeled with the same field

name, but to differentiate them, each will have a different value associated with a particular

checkbox.

As you know, the data from the user are sent to the server in key-value pairs during

form submission.

When more than one checkbox is submitted, you will have multiple values associated

with the same key. In these cases, rather than being given a single MiniFieldStorage instance

for your data, the cgi module will create a list of such instances that you will iterate over to

obtain the different values. Not too painful at all.

Cookies

Finally, we will use cookies in our example. If you are not familiar with cookies, they

are just bits of data information which a server at a Web site will request to be saved on the

client side, e.g., the browser.

Because HTTP is a "stateless" protocol, information that has to be carried from one

page to another can be accomplished by using key-value pairs in the request as you have seen

in the GET requests and screens earlier in this chapter. Another way of doing it, as we have

also seen before, is using hidden form fields, such as the action variable in some of the later

friends*.py scripts. These variables and their values are managed by the server because the

pages they return to the client must embed these in generated pages.

One alternative to maintaining persistency in state across multiple page views is to

save the data on the client side instead. This is where cookies come in. Rather than

embedding data to be saved in the returned Web pages, a server will make a request to the

client to save a cookie. The cookie is linked to the domain of the originating server (so a

server cannot set or override cookies from other Web sites) and has an expiration date (so

your browser doesn't become cluttered with cookies).

These two characteristics are tied to a cookie along with the key-value pair

representing the data item of interest. There are other attributes of cookies such as a domain

subpath or a request that a cookie should only be delivered in a secure environment.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 81

Mr. P Mabu Hussain

Assistant Professor

By using cookies, we no longer have to pass the data from page to page to track a

user. Although they have been subject to a good amount of controversy over the privacy

issue, most Web sites use cookies responsibly. To prepare you for the code, a Web server

requests a client store a cookie by sending the "Set-Cookie" header immediately before the

requested file.

Once cookies are set on the client side, requests to the server will automatically have

those cookies sent to the server using the HTTP_COOKIE environment variable. The cookies

are delimited by semicolons and come in "key=value" pairs. All your application needs to do

to access the data values is to split the string several times (i.e., using string.split() or manual

parsing). The cookies are delimited by semicolons (;), and each key-value pair is separated

by equal signs (=).

Like multipart encoding, cookies originated from Netscape, which implemented

cookies and wrote up the first specification, which is still valid today. You can access this

document at the following Web site:

http://www.netscape.com/newsref/std/cookie_spec.html

Once cookies are standardized and this document finally obsoleted, you will be able

to get more current information from Request for Comment documents (RFCs). The most

current one for cookies at the time of publication is RFC 2109.

4.11 Web (HTTP) Servers
Until now, we have been discussing the use of Python in creating Web clients and

performing tasks to aid Web servers in CGI request processing. We know (and saw earlier in

Sections 20.2 and 20.3) that Python can be used to create both simple and complex Web

clients. Complexity of CGI requests goes without saying.

However, we have yet to explore the creation of Web servers, and that is the focus of

this section. If the Firefox, Mozilla, IE, Opera, Netscape, AOL, Safari, Camino, Epiphany,

Galeon, and Lynx browsers are among the most popular Web clients, then what are the most

common Web servers? They are Apache, Netscape, IIS, thttpd, Zeus, and Zope. In situations

where these servers may be overkill for your desired application, Python can be used to create

simple yet useful Web servers.

Creating Web Servers in Python

Since you have decided on building such an application, you will naturally be creating

all the custom stuff, but all the base code you will need is already available in the Python

Standard Library. To create a Web server, a base server and a "handler" are required.

The base (Web) server is a boilerplate item, a must have. Its role is to perform the

necessary HTTP communication between client and server. The base server class is

(appropriately) named HTTPServer and is found in the BaseHTTPServer module.

The handler is the piece of software that does the majority of the "Web serving." It

processes the client request and returns the appropriate file, whether static or dynamically

generated by CGI. The complexity of the handler determines the complexity of your Web

server. The Python standard library provides three different handlers.

http://www.netscape.com/newsref/std/cookie_spec.html

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 82

Mr. P Mabu Hussain

Assistant Professor

The most basic, plain, vanilla handler, named BaseHTTPRequestHandler, is found in

the BaseHTTPServer module, along with the base Web server. Other than taking a client

request, no other handling is implemented at all, so you have to do it all yourself, such as in

our myhttpd.py server coming up.

The SimpleHTTPRequestHandler, available in the SimpleHTTP-Server module,

builds on BaseHTTPRequestHandler by implementing the standard GET and HEAD requests

in a fairly straightforward manner. Still nothing sexy, but it gets the simple jobs done.

Finally, we have the CGIHTTPRequestHandler, available in the CGIHTTPServer

module, which takes the SimpleHTTPRequestHandler and adds support for POST requests. It

has the ability to call CGI scripts to perform the requested processing and can send the

generated HTML back to the client.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 83

Mr. P Mabu Hussain

Assistant Professor

UNIT V – DATABASE PROGRAMMING

5.1 Database Programming – Introduction
We are going to cover the Python database API and look at how to access relational

databases from Python, either directly through a database interface, or via an ORM, and how

you can accomplish the same task but without necessarily having to give explicitly

commands in SQL.

Topics such as database principles, concurrency, schema, atomicity, integrity,

recovery, proper complex left JOINs, triggers, query optimization, transactions, stored

procedures, etc., are all outside the scope of this text, and we will not be discussing these in

this chapter other than direct use from a Python application. There are plenty of resources you

can refer to for general information. Rather, we will present how to store and retrieve data

to/from RDBMSs while playing within a Python framework. You can then decide which is

best for your current project or application and be able to study sample code that can get you

started instantly. The goal is to get you up to speed as quickly as possible if you need to

integrate your Python application with some sort of database system.

We are also breaking out of our mode of covering only the "batteries included"

features of the Python standard library. While our original goal was to play only in that arena,

it has become clear that being able to work with databases is really a core component of

everyday application development in thePython world.

As a software engineer, you can probably only make it so far in your career without

having to learn something about databases: how to use one (command-line and/or GUI

interfaces), how to pull data out of one using the Structured Query Language (SQL), perhaps

how to add or update information in a database, etc. If Python is your programming tool, then

a lot of the hard work has already been done for you as you add database access to your

Python universe. We first describe what the Python "DB-API" is, then give examples of

database interfaces that conform to this standard.

We will give some examples using popular open source relational database

management systems (RDBMSs). However, we will not include discussions of open source

vs. commercial products, etc. Adapting to those other RDBMS systems should be fairly

straightforward. A special mention will be given to Aaron Watters's Gadfly database, a

simple RDBMS written completely in Python.

The way to access a database from Python is via an adapter. An adapter is basically a

Python module that allows you to interface to a relational database's client library, usually in

C. It is recommended that all Python adapters conform to the Python DB-SIG's Application

Programmer Interface (API).

The first box is generally a C/C++ program while DB-API compliant adapters let you

program applications in Python. ORMs can simplify an application by handling all of the

database-specific details.

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 84

Mr. P Mabu Hussain

Assistant Professor

Figure:5.1: Multi-tiered communication between application and database.

5.2 Python Database Application Programmer's Interface (DB-API)
Where can one find the interfaces necessary to talk to a database? Simple. Just go to

the database topics section at the main Python Web site. There you will find links to the full

and current DB-API (version 2.0), existing database modules, documentation, the special

interest group, etc. Since its inception, the DB-API has been moved into PEP 249. (This PEP

obsoletes the old DB-API 1.0 specification which is PEP 248.) What is the DB-API?

The API is a specification that states a set of required objects and database access

mechanisms to provide consistent access across the various database adapters and underlying

database systems. Like most community-based efforts, the API was driven by strong need. In

the "old days," we had a scenario of many databases and many people implementing their

own database adapters. It was a wheel that was being reinvented over and over again. These

databases and adapters were implemented at different times by different people without any

consistency of functionality. Unfortunately, this meant that application code using such

interfaces also had to be customized to which database module they chose to use, and any

changes to that interface also meant updates were needed in the application code.A special

interest group (SIG) for Python database connectivity was formed, and eventually, an API

was born ... the DB-API version 1.0. The API provides for a consistent interface to a variety

of relational databases, and porting code between different databases is much simpler, usually

only requiring tweaking several lines of code. You will see an example of this later on in this

chapter.

Module Attributes

The DB-API specification mandates that the features and attributes listed below must

be supplied. A DB- API-compliant module must define the global attributes as shown below.

DB-API Module Attributes

Attribute Description

apilevel Version of DB-API module is compliant with

threadsafety Level of thread safety of this module

paramstyle SQL statement parameter style of this module

Connect() Connect() function

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 85

Mr. P Mabu Hussain

Assistant Professor

5.3 Object-Relational Managers (ORMs)
As seen in the previous section, a variety of different database systems are available

today, and most of them have Python interfaces to allow you to harness their power. The only

drawback to those systems is the need to know SQL. If you are a programmer who feels more

comfortable with manipulating Python objects instead of SQL queries, yet still want to use a

relational database as your data backend, then you are a great candidate to be a user of

ORMs.

Think Objects, Not SQL

Creators of these systems have abstracted away much of the pure SQL layer and

implemented objects in Python that you can manipulate to accomplish the same tasks without

having to generate the required lines of SQL. Some systems allow for more flexibility if you

do have to slip in a few lines of SQL, but for the most part, you can avoid almost all the

general SQL required.

Database tables are magically converted to Python classes with columns and features

as attributes and methods responsible for database operations. Setting up your application to

an ORM is somewhat similar to that of a standard database adapter. Because of the amount of

work that ORMs perform on your behalf, some things are actually more complex or require

more lines of code than using an adapter directly. Hopefully, the gains you achieve in

productivity make up for a little bit of extra work.

Python and ORMs

The most well-known Python ORMs today are SQLAlchemy and SQLObject. We

will give you examples of SQLAlchemy and SQLObject because the systems are somewhat

disparate due to different philosophies, but once you figure these out, moving on to other

ORMs is much simpler.

Some other Python ORMs include PyDO/PyDO2, PDO, Dejavu, PDO, Durus,

QLime, and ForgetSQL. Larger Web-based systems can also have their own ORM

component, i.e., WebWare MiddleKit and Django's Database API. Note that "well-known"

does not mean "best for your application." Although these others were not included in our

discussion, that does not mean that they would not be right for your application.

Employee Role Database Example

We will port our user shuffle application ushuffle_db.py to both SQLAlchemy and

SQLObject below. MySQL will be the backend database server for both. You will note that

we implement these as classes because there is more of an object "feel" to using ORMs as

opposed to using raw SQL in a database adapter. Both examples import the set of NAMES

and the random name chooser from ushuffle_db.py.

This is to avoid copying-and-pasting the same code everywhere as code reuse is a good thing.

SQLAlchemy

We start with SQLAlchemy because its interface is somewhat closer to SQL than

SQLObject's interface. SQLAlchemy abstracts really well to the object world but does give

you more flexibility in issuing SQL if you have to. You will find both of these ORMs

(Examples 21.2 and 21.3) very similar in terms of setup

and access, as well as being of similar size, and both shorter than ushuffle_db.py (including

the sharing of the names list and generator used to randomly iterate through that list).

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 86

Mr. P Mabu Hussain

Assistant Professor

5.4 Related Modules
Most of the common databases out there along with working Python modules and

packages that serve as adapters to those database systems. Note that not all adapters are DB-

API- compliant.

Database-Related Modules and Websites

Name Online Reference or Description

Databases

psycopg http://initd.org/projects/psycopg1

psycopg2 http://initd.org/software/initd/psycopg/

PyPgSQL http://pypgsql.sf.net

PyGreSQL http://pygresql.org

pysqlite http://initd.org/projects/pysqlite

sqlite3

sdb http://dev.mysql.com/downloads/maxdb/7.6.00.html#Python
sapdb http://sapdb.org/sapdbPython.html

KInterbasDB http://kinterbasdb.sf.net

pymssql http://pymssql.sf.net (requires FreeTDS [http://freetds.org])

adodbapi http://adodbapi.sf.net

sybase http://object-craft.com.au/projects/sybase

cx_Oracle http://starship.python.net/crew/atuining/cx_Oracle

DCOracle2 http://zope.org/Members/matt/dco2 (older, for Oracle8 only)

Ingres DBI http://ingres.com/products/ Prod_Download_Python_DBI.html

ingmod http://www.informatik.uni-rostock.de/~hme/software/

ORMs

SQLObject http://sqlobject.org

SQLAlchemy http://sqlalchemy.org

PyDO/PyDO2 http://skunkweb.sf.net/pydo.html

http://initd.org/projects/psycopg1
http://initd.org/software/initd/psycopg/
http://pypgsql.sf.net/
http://pygresql.org/
http://initd.org/projects/pysqlite
http://dev.mysql.com/downloads/maxdb/7.6.00.html#Python
http://sapdb.org/sapdbPython.html
http://kinterbasdb.sf.net/
http://pymssql.sf.net/
http://freetds.org/
http://adodbapi.sf.net/
http://object-craft.com.au/projects/sybase
http://starship.python.net/crew/atuining/cx_Oracle
http://zope.org/Members/matt/dco2
http://ingres.com/products/
http://www.informatik.uni-rostock.de/~hme/software/
http://sqlobject.org/
http://sqlalchemy.org/
http://skunkweb.sf.net/pydo.html

Python Programming (CY2105PC)

Department of CSE (CY)

Narasimha Reddy Engineering College (Autonomous)

Page 87

Mr. P Mabu Hussain

Assistant Professor

	LECTURE NOTES ON
	II B. Tech I semester (CY2105PC)
	Mr. P Mabu Hussain
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (CS)
	COURSE OBJECTIVES
	COURSE OUTCOMES
	PROGRAM OUTCOMES
	MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES:
	B. Tech II Year I Sem
	UNIT - II
	UNIT - III
	UNIT - IV
	UNIT – V
	TEXT BOOK:

	UNIT I - INTRODUCTION TO PYTHON
	1.1 Python Basics
	History of Python:
	Python Features:

	1.2 Python Objects
	Object Attributes

	1.3 Standard Types
	1.4 Other Built-in Types
	Type Objects and the “type” Type Object
	“None”, Python's Null Object
	Note: Boolean values

	1.5 Internal Types
	Code Objects
	Frame Objects
	Traceback Objects
	Slice Objects
	Ellipsis Objects
	XRange Objects

	1.6 Standard Type Operators
	Object Value Comparison
	Standard Type Value Comparison Operators
	Object Identity Comparison
	Standard Type Object Identity Comparison Operators
	Note: Interning
	For example:
	Boolean
	Standard Type Boolean Operators

	1.7 Standard Type Build-in Functions
	Standard Type Built-in Functions
	cmp():
	str() and repr() (and `` Operator)
	Note: Why have both repr() and ``?
	type() and isinstance()
	Example
	Running typechk.py, we get the following output:
	Reducing Number of Function Calls
	Object Value Comparison versus Object Identity Comparison
	Reduce the Number of Lookups
	Convenience and Style

	1.8 Categorizing the Standard Types
	1.9 Unsupported Types
	pointer
	float versus double:

	1.10 Introduction to Numbers
	How to Create and Assign Numbers (Number Objects)
	How to Update Numbers
	How to Remove Numbers

	1.11 Integers
	Boolean
	Standard (Regular or Plain) Integers
	Long Integers
	Core Style: Use uppercase "L" with long integers

	1.12 Floating Point Real Numbers
	1.13 Complex Numbers
	1.14 Operators
	Mixed-Mode Operations
	Figure 1.3 : Numeric Coercion

	1.15 Built-in Functions
	1.16 Related Modules
	1.17 Sequences Introduction
	1.18 Strings
	How to Create and Assign Strings
	How to Access Values (Characters and Substrings) in Strings
	How to Update Strings
	How to Remove Characters and Strings

	1.19 Lists and Tuples Lists
	How to Create and Assign Lists
	How to Access Values in Lists
	How to Update Lists
	How to Remove List Elements and Lists

	Tuples
	How to Create and Assign Tuples
	How to Access Values in Tuples
	How to Update Tuples
	How to Remove Tuple Elements and Tuples

	1.20 Mapping and Set Types Mapping Type: Dictionaries
	How to Create and Assign Dictionaries
	How to Access Values in Dictionaries
	How to Update Dictionaries
	How to Remove Dictionary Elements and Dictionaries

	Set Types
	How to Create and Assign Set Types
	How to Access Values in Sets
	How to Update Sets
	How to Remove Set Members and Sets

	UNIT II – FILES & EXCEPTIONS IN PYTHON
	2.1 Files - File Objects
	2.2 File Built-in Function [open()]
	2.3 File Built-in Methods
	Input
	Output

	2.4 File Built-in Attributes
	Attributes for File Objects

	2.5 Standard Files
	2.6 Command-line Arguments
	2.7 File System
	2.8 File Execution
	2.9 Persistent Storage Modules
	pickle and marshal Modules
	DBM-style Modules
	shelve Module

	2.10 Related Modules
	2.11 Exceptions - Exceptions in Python
	2.12 Detecting and Handling Exceptions
	try-except Statement
	try:

	2.13 Context Management
	2.14 Exceptions as Strings
	2.15 Raising Exceptions
	raise Statement Syntax and Common Usage

	2.16 Assertions
	assert Statement

	2.17 Standard Exceptions
	2.18 Creating Exceptions
	2.19 Why Exceptions (Now)?
	2.20 Why Exceptions at All?
	2.21 Exceptions and the sys Module
	2.22 Related Modules
	Exception-Related Standard Library Modules

	2.23 Modules - Modules and Files
	Module Namespaces
	Search Path and Path Search

	2.24 Namespaces
	2.25 Importing Modules & Attributes
	The from-import Statement
	Multi-Line Import
	Extended Import Statement (as)

	2.26 Module Built-in Functions
	import ()
	globals() and locals()
	reload()

	2.27 Packages
	Directory Structure
	Using from-import with Packages
	Absolute Import
	Relative Import

	2.28 Other Features of Modules
	Auto-Loaded Modules
	Preventing Attribute Import
	Case-Insensitive Import
	Source Code Encoding
	Import Cycles
	Module Execution

	3.1 Regular Expressions- Introduction
	First Regular Expression
	RE Pattern String(s) Matched

	3.2 Special Symbols and Characters
	Matching More Than One RE Pattern with Alternation (|)
	Matching Any Single Character (.)
	RE Pattern Strings Matched
	Matching from the Beginning or End of Strings or Word Boundaries (^/$ /\b /\B)
	RE Pattern Strings Matched (1)
	RE Pattern Strings Matched (2)

	3.3 REs and Python
	re Module: Core Functions and Methods

	3.4 Multithreaded Programming – Introduction
	3.5 Threads and Processes Processes
	Threads:
	3.6 Python, Threads, and the Global Interpreter Lock Global Interpreter Lock (GIL)
	3.7 Thread Module
	Using the thread Module (mtsleep1.py)

	3.8 Threading Module
	Using the tHReading Module (mtsleep3.py)

	3.9 Related Modules
	Threading-Related Standard Library Modules Module Description

	UNIT IV – GUI & WEB PROGRAMMING
	4.1 GUI Programming – Introduction
	Getting Tkinter Installed and Working
	Client/Server ArchitectureTake Two

	4.2 Tkinter and Python Programming
	Tkinter Module: Adding Tk to your Applications
	Introduction to GUI Programming
	Top-Level Window: Tkinter.Tk()

	4.3 Brief Tour of other GUIs
	Fig: 4.1 Application using various GUIs under Win32

	4.4 Related Modules and other GUIs
	4.5 Web Programming – Introduction
	4.6 Web Surfing with Python: Creating Simple Web Clients
	4.7 Advanced Web Clients
	4.8 CGI: Helping Servers Process Client Data
	4.9 Building CGI Application
	4.10 Advanced CGI
	Multipart Form Submission and File Uploading
	Multivalued Fields
	Cookies

	4.11 Web (HTTP) Servers
	Creating Web Servers in Python

	UNIT V – DATABASE PROGRAMMING
	5.1 Database Programming – Introduction
	5.2 Python Database Application Programmer's Interface (DB-API)
	Module Attributes
	DB-API Module Attributes Attribute Description

	5.3 Object-Relational Managers (ORMs)
	Think Objects, Not SQL
	Python and ORMs
	Employee Role Database Example
	SQLAlchemy

	5.4 Related Modules
	Database-Related Modules and Websites Name Online Reference or Description
	sqlite3
	ORMs

